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Preface

This book was conceived as a contribution to the increasingly urgent need in the
scientific and resource management communities to develop greater understanding
of forest disturbance as a means to aid in the resolution of complex forest manage-
ment planning issues worldwide. It isour view that, in the past decade, the capability
to use remotely sensed data for the generation of forest disturbance products is
increasingly well understood and, consequently, more widely available. The “how-
to” questions that have preoccupied geospatial analysts and practicing resource
management professionals are now less critical. Rather, clarification is sought on
the wider ecological meaning of the spatial patterns associated with disturbance and
what can and should be done with the copious and diverse information that is
generated by remote sensing and geographical information system (GIS) approaches.
In addition, questions are emerging regarding how forest practices should be changed
(if at all) to accommodate the new perspectives generated by geospatial technologies.
For example, the use of landscape metrics to characterize landscape pattern from
remotely sensed map products enables unprecedented opportunities for improved
forest management and sustainable stewardship. Landscape metrics provide a syn-
optic and systematic means to understand the implications of disturbance processes,
including issues such as atered habitat and forest fragmentation. However, the
appropriate application and insightful interpretation of landscape metrics are only
in their infancy, as are the emerging disciplines of landscape ecology and conser-
vation biology, both of which owe a portion of their growth and potential to devel-
opments in the fields of remote sensing and GIS.

We perceived an opportunity to present in this book a sequence of topics that
would take the reader from a general biological or landscape ecological context of
forest disturbance, to remote sensing and GIS technological approaches, through to
pattern description and analysis, with compelling applied examples of integration
and synthesis. The chapters for this volume were invited, peer reviewed, revised, and
edited; the authors and reviewers adhered to the strictest standards and highest quality
criteriain this process. The issues discussed here address both natural and human-
caused forest change and include factors such as biological components, monitoring
approaches, scale, and pattern analysis. In this book, our goal was to consider forest
disturbance and spatial pattern from an ecological point of view within the context
of structure, function, pattern, and change. Remotely sensed and GIS data are now
the data sources of choice for those whose responsibility it is to capture, document,
and understand landscape pattern and forest disturbance. A discussion of the concepts
of pattern characterization, which is an area of research and application we expect
will continueto grow in importance and significance to resource managers, highlights
the challenges in this emerging area of research, and athough significant progress
has been made, clearly much remains to be done. We conclude this book with afinal



chapter in which we provide asummary and description of the thematic issuesrelated
to detection and mapping of forest disturbances with remotely sensed and GIS data.
Over the course of the book, we attempt to illustrate how the elements presented
from ecological underpinnings, data considerations, change detection method, and
pattern analysis, combine as a problem-solving, information-generating approach. It
is our hope that the materials presented will stimulate discussion and provide guid-
ance for those who are interested, or faced with similar challenges, in capturing and
characterizing forest disturbance and pattern.
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INTRODUCTION

Forests are inherently dynamic in space and time. Their composition and distribution
can change not only through continuous, subtle, and slow forest development and
succession, but also through discontinuous, occasional, and sudden natural distur-
bances (Botkin, 1990; Oliver and Larson, 1996; Spies, 1997). In addition to natural
processes, human activities and disturbances are the source of much contemporary
forest change (Houghton, 1994; Meyer and Turner, 1994; Riitters et al., 2002). Such



2 Understanding Forest Disturbance and Spatial Pattern

land cover change is widely considered the primary cause of biodiversity decline
and species endangerment (Hansen et al., 2001). Monitoring natural and human-
caused land cover and forest changes, disturbance processes, and spatial pattern is
relevant for the conservation of forest landscapes and their inhabitants (Balmford et
al., 2003). In recent years, international political momentum dedicated to conserva-
tion of biodiversity and sustainable development has increased (Table 1.1).

Biodiversity conservation and sustainable forest management require the collec-
tion of new kinds of forest and land cover information to complement traditional
forest databases, model outputs, and field observations. Remote sensing and geo-
graphical information systems (GISs) have emerged as key geospatial tools —
together with models of all kinds and descriptions — to satisfy increasing informa-
tion needs of resource managers (Franklin, 2001). But, these are more than tools —
they represent essentially new approaches to forest disturbance and spatial pattern
mapping and analysis because they enable new ways of viewing disturbances and
landscapes, which in turn influence our understanding and management practices.
Critical developments in the use of remote sensing and GIS approaches include the
ability to map biophysical (e.g., Iverson et al., 1989), biochemical (e.g., Roberts et
al., 2003), and disturbance (e.g., Gong and Xu, 2003) characteristics of forest
landscapes over a wide range of spatial scales and time intervals (Quattrochi and
Pellier, 1991; Turner et al., 2003).

This introductory chapter provides a brief landscape ecological foundation for
the importance of detecting and monitoring forest disturbances and changes in forest
landscape patterns. We discuss monitoring and scale considerations and then describe
basic stand and landscape dynamics of interest to resource managers. We introduce
landscape metrics, which are then more completely reviewed by Gergel (Chapter 7,
this volume). We emphasize a developing understanding of pattern/process reciproc-
ity in forested landscapes, which is then highlighted by several case studies of
different disturbance patterns in widely differing forest environments. Immediately
following this introduction is background material on pertinent remote sensing and
GIS data selection, methods, and applications issues in support of forest pattern
analysis and change detection (Chapter 2). This material leads naturally to the suite
of illustrative examples of remote sensing and GIS approaches in forest harvest
pattern detection (Chapter 3), forest insect defoliation mapping (Chapter 4), moni-
toring fire disturbance (Chapter 5), and the role of GIS in forest disturbance and
change mapping (Chapter 6). Subsequent chapters in this book present specific
aspects of spatial pattern analysis, including remote sensing considerations (Chapter
7) and a detailed remote sensing/GlS/pattern analysis case study (Chapter 8)
designed to aid in understanding critical resource management issues. Each of these
chapters has been selected as a representative perspective on developing remote
sensing and GIS approaches, which are increasingly recognized, in combination
with field data and modeling methods, as the only feasible way to monitor landscape
change over large areas with sufficient spatial detail to allow comparison of resultant
patterns of different management or natural disturbance regimes.
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Introduction: Structure, Function, and Change of Forest Landscapes 5

LANDSCAPE ECOLOGY

The traditional focus of forest ecology, management, and planning has been primarily
on separate landscape elements such as homogeneous forest stands or habitat
patches. The importance of interactions among different elements in a landscape
was noted in the early 1980s (Forman, 1981), coincident with the need for forest
management strategies to consider landscape structure as a requirement for long-
term conservation of biodiversity (Noss, 1983; Risser et al., 1984). It has since
become generally accepted that the structure of the landscape influences the eco-
logical processes and functions that are operating within it (Haines-Young and
Chopping, 1996). The discipline of landscape ecology is now widely recognized as
a distinct perspective in resource management and ecological science.

The central goal of landscape ecology is the investigation of the reciprocal effects
and interactions of landscape patterns and ecological processes (Turner, 1989).
Fundamental to such investigation is the awareness that landscape observation is
scale dependent, spatially and temporally, with different landscape patterns and
processes discernible from different points of view and time that are specific to the
organism (e.g., trees vs. earthworms) or the abiotic process (e.g., carbon gas fluxes)
under study (Perera and Euler, 2000). A brief overview of general scale consider-
ations is included in this introductory section; Coops et al. (Chapter 2, this volume)
present concrete spatial data selection issues related to scale.

LANDSCAPE STRUCTURE, FUNCTION, AND CHANGE

When studying the ecology of landscapes, at least three basic elements must be
considered and understood: structure, function, and change (Forman, 1995; M.
Turner, 1989). Landscape structure generally refers to the distribution of energy,
material, and species. The spatial relationships of landscape elements are character-
ized as landscape pattern in two ways (McGarigal and Marks, 1995; Remmel and
Csillag, 2003). First, the simple number and amount of different spatial elements
within a landscape is generally defined as landscape composition, and this measure
is generally considered to be spatially implicit. Second, the arrangement, position,
shape, and orientation of spatial elements within a landscape are generally defined
as landscape configuration, which is a spatially explicit measure. Within the frame-
work of this book, this meaning of landscape pattern is used to ensure that both the
amount and arrangement of spatial elements of interest are included. In contrast,
some studies equate landscape pattern strictly with configuration and treat compo-
sition as a second landscape characteristic unrelated to pattern (e.g., Martin and
McComb, 2002; Miller et al., 2004).

A landscape can be defined as a spatially complex, heterogeneous mosaic in
which homogeneous spatial elements or patches are repeated in similar form over
an area bounded by the spatial scale at which ecological processes occur (Urban et
al., 1987). For example, juvenile dispersal distance has been used to estimate the
spatial extent of landscapes in forest birds (Villard et al., 1995); in another example,
a third-order watershed could be the appropriate landscape for consideration of water
flow and quality (Betts et al., 2002). Mosaic patterns exist at all spatial scales from
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submicroscopic to the planet and universe and the type, size, shape, boundary, and
arrangement of landscape elements across this mosaic influence a variety of ecolog-
ical functions.

Landscape function generally refers to the flow of energy, materials, and species
and the interactions between the mosaic elements (Forman, 1995). Examples range
from fundamental abiotic processes, such as cycling of water, carbon, and minerals
(Waring and Running, 1998), to biotic processes, including forest succession (Oliver
and Larson, 1996), and the dispersal and gene flow of wildlife (e.g., Hansson, 1991).
Such biotic and abiotic flows are determined by the landscape structures present,
and in turn, landscape structure is created and changed by these flows. The main
processes or flows generating landscape structure formation and landscape change
over time can be considered as natural and anthropogenic disturbances (e.g., wildfire,
insect infestation, harvesting); biotic processes (e.g., succession, birth, death, and
dispersal); and environmental conditions (e.g., soil quality, terrain, climate) (Levin,
1978). An overview of some of these processes in the forest environment is presented
in a subsequent section of this chapter and in later chapters discussing specific
disturbance processes.

FOREST MANAGEMENT

The goals of forest management have expanded in recent decades to include values
leading to the implementation of different strategies based on concepts of sustained
yield, multiple use, and more recently, ecosystem management. Ecosystem manage-
ment includes the balancing ecological and social (economic and noneconomic)
forest values in the context of increasing population growth, resource use, pollution,
and the rate and extent of ecosystem alteration (Kimmins, 2004). Concepts of natural
disturbance emulation encompass the idea of trying to arrange changes in forests
due to human disturbance to more closely approximate those induced by natural
processes (Attiwill, 1994; Hunter, 1990). This is an acknowledgment of disturbances
as one of the fundamental processes and drivers of landscape structure and func-
tioning at all spatial and temporal scales in the field of landscape ecology (Turner,
1987). Principles of landscape ecology help to make this forest management
approach a viable management option by providing a higher-level context for forest
management practices (Crow and Perera, 2004).

Emulating natural disturbance aims to guide local forest management by mim-
icking the natural range of spatial and temporal variation in landscape- and stand-
level forest landscape structures created by past natural disturbances in the given
location (Bergeron et al., 1999; Hunter, 1999; Kimmins, 2004). The presettlement
landscape allowing for natural dynamism is thought to be the ideal condition against
which contemporary landscape diversity and composition ought to be evaluated
(Noss, 1983; Seymour and Hunter, 1999). The natural disturbance approach builds
on the underlying assumption that forest ecosystems, long-term forest stability, and
biodiversity will be sustained if the forest structures created by natural disturbances
are maintained since they reflect the same conditions under which these ecosystems
have evolved (Bunnell, 1995; Engelmark et al., 1993; Hunter, 1990). For example,
Hudak et al. (Chapter 8, this volume) provide a case study perspective of forest
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harvest and fire disturbance patterns in an area where both disturbances are known
to have occurred.

Consideration of the ecological effects of spatial patterns created by forest
harvesting is important for the management regime (Franklin and Forman, 1987),
and the patterns and processes in landscapes created by natural disturbances gen-
erally display greater variation in time and space than traditional silviculture and
forest management (Seymour et al., 2002). Disturbance regimes can be described
by a variety of characteristics; however, the main components include magnitude,
timing, and spatial distribution (Seymour and Hunter, 1999), and each of these
will have an impact on the stand- (or patch-) and landscape-level of the forest
ecosystem. Magnitude generally describes the intensity or the physical force of
the disturbance or the severity of the effect of the disturbance on the landscape
element or organism (Seymour and Hunter, 1999; Turner et al., 2001). Timing of
a disturbance mainly specifies the frequency, which is often expressed not only as
the return interval between disturbances, but also as the duration and seasonality
of a disturbance type (Seymour and Hunter, 1999). The spatial distribution of a
disturbance refers to the extent, shape, and arrangement of disturbance patches
(Seymour and Hunter, 1999).

A review by Seymour et al. (2002) of disturbance regimes in northeastern North
America contrasts the differences in aspects of these three main characteristics
(magnitude, timing, and spatial distribution) by comparing wildfire with pathogens
and insect herbivory. In the investigated cases, wildfires were of stand-replacing
magnitude, with a return interval of 806 to 9000 years and a disturbance patch size
distribution ranging between 2 and more than 80,000 ha, while pathogens and insect
herbivory disturbance was of a magnitude to create smaller canopy gaps, with a
return interval and patch size distribution ranging between 50 and 200 years and
between 0.0004 and 0.1135 ha, respectively (Seymour et al., 2002; Figure 1.1).

While the natural disturbance approach may be an ecologically sound premise,
its constraints and limitations also need to be considered. Some issues to address in
the future include (a) society’s reluctance to accept this paradigm in ecosystems that
experience disturbances that are very large, severe, and frequent; (b) whether past
disturbance regime effects will be rendered inapplicable in the future due to long-
term climatic variation, invasion of nonnative species, air pollution, human-induced
climate change (Kimmins, 2004); and (c) the difficulty in obtaining and interpreting
historic disturbance data for adequate conclusions about the natural disturbance
characteristics (Appleton and Keeton, 1999).

SCALE

Every organism is an “observer” of the environment, and every observer looks at
the world through a filter, imposing a perceptual bias that influences the recognition
of natural systems (Levin, 1992). Science, in general, can be seen as a product of
the way the world is seen, constrained by the space and time within which humans
inhabit the world (Church, 1996). There is little doubt that ecologists’ perceptions
have been revolutionized through availability of satellite imagery; for example:
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FIGURE 1.1 Boundaries of natural variation in studies of disturbance in northeastern North
American forests. The hand-fitted diagonal boundary line defines the upper limits on these
disturbance parameters in combination, all of which fall in the lower right of the diagram.
Upper limits of the area and return interval of severe fires and windstorms were truncated at
10* Ha and 10* years, respectively. (Adapted from Seymour et al., 2002.)

*  “Images from satellites have revolutionized our perception and approaches
to understanding landscapes and regions” (Forman, 1995: p. 35)

e “More than any other factor, it was this perspective provided by satellite
imagery that changed the ... manager’s views about the main threats to
the panda’s survival” (Mackinnon and de Wulf, 1994, p. 130)

Scale is a strong determinant of viewing, and interpreting the environment and
the interest in scale-related research is rapidly increasing (Schneider, 1994). Scale
is often understood simply as dimensions of time and space, but has been defined
in various more complex ways; for example, Church (1996) considered scale as a
relative measure set by the resolution of measurements. Schneider (1994, p.3) defined
scale as “the resolution within the range of a measured quantity.” Common to all
scientific definitions of scale, however, is a recognition of the temporal and spatial
dimensions (Lillesand and Kiefer, 2000; Wiens, 1989).

SPATIAL SCALE

In ecology, spatial scale is usually considered as the product of grain and extent
(Forman, 1995; Wiens, 1989), which, in remote sensing, relate to resolution (pixel
size) and area of coverage, respectively (Lillesand and Kiefer, 2000). A remote
sensing scientist will typically define spatial scale as a proportion, a ratio of length
on a map to actual length. Small scale, therefore, suggests that a large area is covered;
in other words, the difference between actual and mapping size is great (coarse
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spatial detail). An ecologist’s typical definition of spatial scale is the level or degree
of spatial resolution and spatial extent perceived or considered. Ecologists under-
stand a small-scale study to encompass a small area with fine spatial detail. Overall
extent and grain define the upper and lower limits of resolution of a study; they are
analogous to the overall size of a sieve and its mesh size (Wiens, 1989). The spatial
scale at which measurements or observations are taken influences the recognition
of spatial patterns and underlying processes of the environment and of the organisms
under study (Wiens, 1989); this has been called intrinsic scale, which may determine
the type of spatial patterns observed. “The intrinsic scale is a property of the
ecological process of interest, for example, tree fall, competition, stomatal control,
or microclimate feedbacks, and it is governed in part by the size of the individual
organisms (or events) and in part by the range of their interactions with their
environment” (Malingreau and Belward, 1992, p. 2291). Others (e.g., Hunsaker et
al., 2001) have been keen to understand the uncertainty associated with spatial data
at different scales.

Remotely sensed imagery is an optimal way to collect spatial data across multiple
nested or hierarchical scales; imagery can provide synoptic coverage over large areas,
enabling investigations at the landscape scale, or more detailed imagery can be
collected representing smaller areas, most practically through some form of sampling
framework. As always, limitations exist in the quantities of spatial resolution and
area of coverage that can be obtained. Spatial resolution of imagery depends on the
sensor spectral sensitivity, and the instantaneous field of view, while the area of
coverage depends on the satellite or airborne altitude (swath width) and the instru-
ment total field of view (Lillesand and Kiefer, 2000; Richards and Jia, 1999). Landsat
satellites typically cover an area of 185 x 185 km with a sensor spatial resolution
or pixel size of 30 x 30 m for most of the spectral bands; other satellites carrying
Advanced Very High Resolution Radiometer (AVHHR) sensors cover an area of
2394 x 2394 km with a spatial resolution of approximately 1.1 km. More details on
these fundamental concepts are presented in Chapter 2 of this volume.

TEMPORAL SCALE

Temporal scale refers to the frequency with which an observation is made (Lillesand
and Kiefer, 2000), but similar to the spatial scale, it is made up of two components;
the temporal resolution and the temporal extent. The key to temporal scale is change
over time, and this pattern or trend may change with hours, days, months, years, or
centuries. Depending on the research question and the object under study, the tem-
poral scale of the investigation can be very different. For each source of imagery,
the temporal resolution — a sensor-specific component of scale — must be quanti-
fied. Satellites passing frequently over the same area translates into a higher temporal
resolution for a given sensor package; for example, the temporal resolution is 24
days for Indian Resource Satellite (IRS)-P2 satellites (Richards and Jia, 1999), but
1 day for satellites carrying the AVHRR (Malingreau and Belward, 1992). In addition,
the original start of data collection for different sensor packages determines the
maximum possible temporal extent of any earth observation study. Operable satellites
launched many years ago translate into a higher temporal extent; for example, the
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IRS-P2 satellite was launched in October 1994 (Richards and Jia, 1999), while
AVHRR satellites were launched in several National Oceanic and Atmospheric
Administration series between June 1979 and May 1991. Clearly, the ability to
monitor frequent landscape changes at the temporal scale desired (e.g., daily) may
be limited by the temporal resolution and extent of a given satellite platform.

RESEARCH DESIGN AND INTERPRETATION

Understanding the effect of scale on the detection and understanding of patterns and
causal mechanisms is one step toward the development of common ecological
theories within scales (Wiens, 1989). There is no single proper scale at which all
sampling ought to be undertaken (Levin, 1992; Wiens, 1989), and there are no simple
rules to select automatically the appropriate scales of attention (Meentemeyer, 1989).
Ecological structure, function, and change are dependent on spatial and temporal
scale (Turner, 1989). The identification of the appropriate scale to use will depend
on the organism or phenomenon under investigation. A species- or phenomenon-
centered approach, with recognition of its intrinsic scale to the identification of
structure, is most relevant in the research design and analysis of forest landscapes.

Avrbitrary scale choices can be avoided by analyzing the variance of measure-
ments across many scales using techniques such as the nearest neighbor method
(Davis et al., 2000), semivariance analysis (Meisel and Turner, 1998), and several
other univariate (spatial correlograms and spectral analysis) and multivariate meth-
ods (Mantel test and Mantel correlogram; Legendre and Fortin, 1989). Statistical
approaches are typically based on the observation that variance increases as transi-
tions are approached in hierarchical systems (O’Neill et al., 1986). Peaks of unusu-
ally high variance indicate scales at which the between-group differences are espe-
cially large, which suggest the representation of the scale of natural aggregation or
patchiness of vegetation (Greig-Smith, 1952) or organisms; this is sometimes
referred to as the boundary of a scale domain (Wiens, 1989). A method of identifying
the appropriate scale of remotely sensed imagery uses a high spatial resolution image
characterized statistically and then subsequently collapsed to successively coarser
spatial resolutions while calculating local variance (Woodcock and Strahler, 1987).
The image resolution at which local variance is highest can be deemed the appro-
priate remote sensing scale in relation to the structural components of the ground.

PROCESSES GENERATE PATTERNS

Remote sensing of terrestrial ecosystems in support of resource management
involves identifying ecosystems and their biological, ecological, and physical char-
acteristics (Franklin, 2001). The definition of an ecosystem and the relevant char-
acteristics vary with the resource managed and the issue under consideration. There-
fore, the expectations that ecologists might have of remote sensing will vary; for
example, species composition and the physical arrangement of the vegetation can
be remotely sensed and used to describe or infer ecosystem attributes using straight-
forward methods and readily available data. Advances in remote sensing technology
continue to expand the capacity to monitor changes of interest in ecosystems and
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resource management (Wulder et al., 2004). Forest ecosystems change over time
because the trees must grow to survive, due to competition among trees, interactions
among trophic levels, and large-scale disturbances. Certain aspects of the current
state of ecosystem dynamism can be inferred from individual, remotely sensed
images, and other aspects can only be assessed using a time series of images. In
this section, we provide ecological background on the remote sensing of ecosystem
attributes with special attention to the dynamic nature of these ecosystem attributes,
the landscape structure, and composition.

FOREST STAND DYNAMICS

Current understanding of patterns and processes of stand development have been
fully described by Oliver and Larson (1996). Their synthesis is useful as a basis for
understanding the potential contributions of remote sensing. Disturbance, meaning
the death of trees that frees growing space, is fundamentally important for stand
development. Oliver and Larson (1996) distinguished between autogenic and allo-
genic forms of disturbance; autogenic processes cause death of individual trees for
reasons that are particular to the tree and ecosystem, and allogenic forms of distur-
bance arise outside of the affected trees or ecosystem. For ease of explaining the
processes involved in stand dynamics and the stand structures that result, Oliver and
Larson first described long-term stand development following a major disturbance,
including autogenic processes responsible for death of trees, and then incorporated
the impacts allogenic forms of disturbance imposed on this underlying pattern of
stand development. Oliver and Larson pointed out that stand development has been
investigated from two perspectives, one based on describing stand structures and the
other based on understanding stand developmental processes. The latter approach
has great value to resource management because it leads to greater capacity for
predicting changes to stands over time. Individual remotely sensed images may be
well suited to the stand structural approach to understanding stand dynamics, while
stand development typically requires multitemporal resolution imagery. Ecological
knowledge must be used to interpret the remotely sensed images to ensure maximum
information extraction occurs from available remotely sensed data (Graetz, 1990).

Forest ecosystems pass through four stages during the course of stand develop-
ment (Figure 1.2). The period immediately following a major disturbance is the
stand initiation stage. During this stage, the important process in stand dynamics is
the establishment of a cohort of vegetation. New vegetation becomes established
when the preexisting vegetation is killed; the number of species and the number of
plants that establish themselves and grow to fill the unoccupied growing space
depends on the ecoclimatic zone, site capacity to supply essential materials (nutrients
and water), and the relative amount of growing space that is made available and the
manner in which it is made available. The period of recruitment ends when the
community of trees first comes to fully occupy the available growing space. At this
time, the ecosystem enters the stem exclusion stage. Competition among established
trees is the dominant process affecting ecosystem development and structure during
the stem exclusion stage. Inherent differences among species affect the course of
competition and consequently the stand structures that develop. Virtually no growing
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FIGURE 1.2 Schematic stages of stand development following major disturbances. All trees
forming the forest start soon after the disturbance; however, the dominant tree type changes
as stem number decreases and vertical stratification of species progresses. The height attained
and the time lapsed during each stage vary with species, disturbance, and site. (Adapted from
Oliver and Larson, 1996.)

space becomes available for the establishment of additional trees as the result of
density-dependent mortality (competition). At about the time that the height growth
of successful competitors becomes negligible, these trees begin losing their ability
to maintain their “grip” on the growing space. This diminished capacity might be
abetted by disease or the activities of insects commonly found in the ecosystem and
eventually some trees die.

Species that have been less successful in competing in previous years may now
expand to fill the vacated growing space and consequently come to dominate the
overstory. However, if some of the growing space that comes available is captured by
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a ground story, particularly a ground story that includes advanced regeneration of
some tree species, then the stand enters the understory reinitiation stage. Stand struc-
ture becomes increasingly complex with the onset of the understory reinitiation stage;
the advanced regeneration does not have sufficient growing space to form a lower
strata of the canopy. Consequently, the ecosystem remains dominated by the cohort
of trees that were established after the initial disturbance. At a later time in stand
development, the autogenic processes release growing space in sufficiently large areas
to cause patches to return to the stand initiation stage, and as a result the ecosystem
enters the old-growth stage. With the release of growing space in these patches,
advanced growth is released, and other regeneration mechanisms operate to cause a
new cohort of trees to become established. The establishment of patches of vegetation
of new cohorts continues until all of the original cohort has been replaced, and at this
time an old-growth stand exists. In nature, this stage of development is seldom
achieved because in many parts of the globe large-scale disturbances return the entire
ecosystem to the stand initiation stage. Other forests are influenced by gap-replacing
disturbance, and there continues to be considerable debate about the historical fre-
quency of gap versus stand-replacing disturbances. One possible valuable application
of remote sensing would be to test some of the assumptions about the frequency and
extent of gap versus stand-replacing forest disturbances (Wulder et al., 2004).

Oliver and Larson (1996) presented that it is more common for a variety of tree
species ranging from pioneers to long-lived, shade-tolerant species to become estab-
lished during the stand initiation stage (known as initial floristics) than for later seral
stage species to become established after early seral stage species have occupied the
site, modified the environment, and lived a substantial portion of their life cycle
(relay floristics). This is in contrast to ideas of early ecologists, who imagined that
stand development involved a succession of stand cover types. Moreover, Oliver and
Larson (1996) show that forest ecosystems commonly develop a stratified mixed
stand structure during the stand initiation and stem exclusion stages. In stratified
mixed stands, the pioneer species grow most rapidly in the years immediately
following a disturbance and dominate the overstory in the years immediately fol-
lowing the disturbance. Species with inherently slow initial height growth but capable
of surviving in shade, albeit with even slower growth rates, sort themselves into
lower strata during the early years of the stem exclusion stage. Species that initially
dominate the upper stratum are usually shorter lived than the more tolerant species
in lower strata, and hence eventually the lower strata are freed from suppression and
dominate the overstory. The difference between the initial floristic pattern of stand
establishment and the relay floristic pattern has practical significance when inter-
preting the pattern of stand development of stratified mixed stands. In the past,
stratified mixed stands have been sometimes misinterpreted to be uneven-aged
stands, whereas in reality members of all strata became established in response to
the same disturbance. This distinction is particularly important when devising silvi-
cultural interventions to maintain or promote particular stand structures.

Site characteristics such as microclimate and soil conditions vary spatially,
affecting the mix of species that becomes established in the various ecosystems that
make up a landscape. During the stand initiation stage, site characteristics can be
viewed as environmental “sieves” through which species must pass to become
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established. For example, species vary in their capacity to tolerate drought, grow on
nutrient-poor soils, become established on cold sites, withstand exposure, and sur-
vive in shade. Many remotely sensed images only contain information about the
uppermost canopy layer and not about lower strata and the ground story, but knowl-
edge of ecological habits of the tree species and of the stand development patterns
operating in the region can be used to better interpret current stages in stand devel-
opment of the observed ecosystems and their future stand structures. Some promising
new image data types with three-dimensional capabilities (e.g., light detection and
ranging, LIDAR) are described by Coops et al. (Chapter 2, this volume).

ErrecTs OF DISTURBANCE ON STAND DYNAMICS AND LANDSCAPES

Fire, windthrow, insect attack, and harvesting are examples of allogenic disturbances.
Each type of disturbance has a different impact on ecosystems and landscapes,
thereby having diverse effects on the stand structure created, the species that can
become established in the growing space made available by the disturbance, and
changes to the soil and site conditions necessary for tree growth. The frequency and
spatial extent of major disturbances affect the proportion of a landscape in each stage
of stand development at any point in time. Remote sensing provides data for moni-
toring disturbances and documenting their effects on each ecosystem in a landscape.
These data can provide a means to monitor the subsequent stand development for
much larger numbers of ecosystems than could be measured by field surveys.

The type and severity of disturbance affects the success that can be achieved by
each regeneration strategy. For example, forest fires commonly consume the forest
floor, thereby eliminating advanced regeneration and therefore some species such as
balsam fir, which rely on advanced growth to become established after disturbance and
are prevented from being a future part of the ecosystem after fire. Clark and Bobbe
(Chapter 5, this volume) provide background and an example of using remote sensing
for portraying fire impacts, and Hudak et al. (Chapter 8, this volume) include fire
disturbance in the presented case study. A contrasting example on the role of disturbance
in favoring particular regeneration strategies is what happens when the disturbance
removes selected species from the overstory but does not eliminate the ground story,
such as occurs with outbreaks of defoliating insects (Seymour, 1992; Figure 1.3). In
these instances, species regenerating from advanced growth might have an advantage
in acquiring the growing space made available, and species that are intolerant of shade
might be limited in their capacity to regenerate. Hall et al. (Chapter 4, this volume)
develop an approach useful in mapping insect disturbance using remote sensing.

Disturbances can create atypical stand structures in ecosystems that had been in
the stem exclusion or understory reinitiation stages at the time of disturbance. These
relatively young stands would typically have complete overstories of trees belonging
to one cohort if only allogenic processes were in play, but after a major disturbance
that does not completely eliminate the original cohort, these stands will have more
than one cohort visible from above. Such disturbed stands will exhibit greater spatial
variability in stand structure than undisturbed stands. It is possible that these dis-
turbed stands will have structure commonly associated with old-growth stands, and
these structures might mislead some into believing that they are stable, old-growth
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Large, old red spruce dominate the overstory of the
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suppression on lower strata.

Earlier developmental stages are illustrated by the
smaller (and probably younger) spruces A, B, and C
in the present stand. Firs generally occupy
sub-canopy strata.

C

Repeated sawlog harvests remove old spruce.
Residual overstory now consists of previously
suppressed, unmerchantable spruces and firs.
Advance seedlings and saplings

begin to devolop in gaps created by harvesting.

Before spruce budworm outbreak ca. 1910

Many residual firs respond vigorously, and now
dominate the overstory. Residual spruces also
respond; some trees over 15 cm dbh are removed
for pulpwood during early 1900s.

A Advance regeneration forms dense, virtually
4 continuous lower stratum with an irregular structure
corresponding to the tree heights when released.

After spruce budworm outbreak ca. 1925

All mature firs (and some spruces) killed by
budworm outbreak ca. 1913-1919.

Many advance fir saplings also succumb;
some survive but suffer severe dieback of their
terminal shoots.

After recovery, stand quickly returns to stem
exclusion stage, as the sapling advance
regeneration develops vigorously. Where remnant
spruces B and C (from the original old-growth stand)
do not blow down or succumb to bark beetles, they
now dominate the overstory. Where budworm-
caused mortality and logging removed the overstory
completely, stand has very even-aged structure,

FIGURE 1.3 Development of typical spruce-fir stand after logging and budworm attack circa
1860-1970. (Adapted from Seymour 1992.)



16 Understanding Forest Disturbance and Spatial Pattern

ecosystems. Disturbance can also change the capacity of a site to supply the nutrients
and water required for establishment and growth. These effects can increase or
decrease growth, and the impact on growth might vary over time. For example, fire
can release nutrients held in recalcitrant organic matter, thereby increasing plant
growth immediately after the fire, but fire also decreases the total stock of nitrogen
existing on the site, which may decrease long-term potential productivity.

A disturbance affecting a large area can reduce the number of tree species that
can disperse seeds onto the disturbed areas. Dispersal distance varies among species
depending on mode of dispersal, seed size, and special appendages on seeds that
facilitate dispersal. Therefore, species such as trembling aspen with very light seeds
that can disperse in wind for great distances can disperse seeds onto large disturbed
areas, whereas species with heavy seeds and no wings or other appendages to facilitate
dispersal can only disperse a short distance from their site of origin (Burns and
Honkala, 1990). In some circumstances, species with restricted dispersal distances
maintain a presence in stands that become established because variations in the severity
of the disturbance leave islands of living trees throughout the disturbed area to serve
as seed sources. For example, small patches of burned or lightly burned forest are
sometimes found scattered across a burned landscape, and seeds from species such
as white spruce can disperse from these refugia into the surrounding disturbed area.

Large-scale disturbance is an integral part of numerous landscapes affecting the
species found and the distribution of land area among stages of development. As a
consequence, large-area forest fires affect virtually all of the boreal forest of central
Canada on a regular basis (Stocks et al., 2003). Only tree species that are adapted
to regenerate after fire are found in this region. Moreover, most stands are in the
stem exclusion stage or early in the understory reinitiation stages because the fire
frequency precludes many stands reaching the old-growth stage. Similarly, wide-
spread outbreaks of spruce budworm in the spruce-fir forests of eastern North
America profoundly affect stand development and the landscape (Baskerville, 1975).
Spruce budworm outbreaks occur at 30-year intervals, and in northern New Brun-
swick there were two age classes of ecosystems existing at the beginning of the
outbreak: 30-year-old forest stands originating from the immediately previous out-
break and 60-year-old stands originating from the outbreak before the last one
(Figure 1.4). There is widespread mortality in the 60-year-old stands, causing those
ecosystems to return to the stand initiation stage. In the 30-year-old stands, the effect
of spruce budworm mortality is to thin stands and shift species composition to a
higher percentage of spruce and birch and a lower percentage of balsam fir, although
balsam fir usually continues to be the largest proportion of these stands. In this
manner, disturbance has largely determined the landscape characteristics and signif-
icantly affected stand development of most stands in the region.

PATTERNS GENERATE PROCESSES
IMpPACTS OF PATTERNS ON EcoLocicAL PROCESSES

Just as physical and ecological processes generate landscape structure, landscape
structure influences physical and ecological processes. Specifically, landscape pattern
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FIGURE 1.4 Natural succession in the Green River fir-spruce-birch forest. The two columns
represent two sequences both beginning in 1875 but with differing initial conditions. The
blackened tops represent disfiguration by intensive budworm feeding. The hatched cones
represent white spruce trees, the unshaded cones are firs, and the rounded trees are hardwoods.
(Adapted from Baskerville, 1975.)

has been found to affect rates of wind and water erosion, intensity of natural distur-
bances (Foster, 1988), plant and animal movement (Beier and Noss, 1998), survival
(Doherty and Grubb, 2002), and reproduction (Robinson et al., 1995). Here, a brief
review is provided of the components of landscape pattern that have been shown to
exert a strong influence on ecological processes. Such patterns are considered prior-
ities for measurement in remote sensing (Gergel, Chapter 7, this volume).



18 Understanding Forest Disturbance and Spatial Pattern

All landscapes are characterized by degrees of heterogeneity (patchiness) at
different scales; differing substrates (soils, bedrock), natural disturbances (fire, insect
outbreaks), and human activity (forestry, road building) all create patchiness across
a landscape. The “patch-corridor-matrix” model (Forman, 1995) has become a cen-
tral component of landscape ecology in theory and in practice:

1. A patch is a homogenous area that differs from its surroundings (Forman,
1995). A woodlot surrounded by farmland and a wetland immersed in
upland habitat are examples of patches. Patch shape often correlates with
the intensity of human activity. Intense human activity often results in
simpler, less-convoluted patch shape

2. Corridors are a form of patch in that they differ from the surrounding
areas. However, they are usually identified as strips that aid in flows
between patches (Lindenmayer, 1994). Corridors fulfill a number of roles,
including facilitating animal dispersal, wildlife habitat, preventing soil
and wind erosion, and aiding in integrated pest management (Barrett and
Bohlen, 1991). A riparian buffer strip might serve as a corridor for forest
songbirds (Machtans et al., 1996) or a kilometers-wide forested strip could
serve as a corridor for cougar (Beier, 1995). The life history traits of each
species determine the characteristics of corridor habitat

3. The matrix is the most extensive component of the landscape, is highly
connected, and controls regional dynamics (Forman, 1995). For instance,
in the Canadian prairies, small woodlot patches occur in a matrix of natural
grassland or agricultural development

The landscape structures briefly described above (patches, corridors, and matrix)
influence, and are influenced by, landscape flows. These flows include diverse ele-
ments such as wildlife (Lindenmayer and Nix, 1993), soil and nutrients (Stanley
and Arp, 1998), and water (Campbell, 1970). For example, Haddad (1999) demon-
strated that pine plantations impede the movement of butterflies between patches of
early successional forest.

One of the central principles of landscape ecology is that all ecosystems are
interrelated, with movement or flow rate dropping sharply with distance but more
gradually between ecosystems of the same type (Forman, 1995). Thus, a very
heterogeneous landscape (with many patch types) is marked by a relatively low
degree of movement (flow) and a large amount of resistance.

FRAGMENTATION, CONNECTIVITY, AND ISOLATION

Fragmentation is the “breaking apart” of habitat. This can occur as a result of natural
processes such as forest fires or anthropogenic disturbances such as road building
or timber harvesting. Different views exist about definitions regarding “habitat loss”
and “fragmentation.” Wilcove et al. (1986) suggested that fragmentation is a com-
bination of habitat loss and isolation; however, recently the emerging consensus is
that habitat loss and fragmentation should be described separately (Andrén, 1994;
Fahrig, 1998, 2002; Mazerolle and Villard, 1999). Fragmentation is often defined
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FIGURE 1.5 Unfragmented (A) versus fragmented (B) landscapes with the same amount of
habitat present in each landscape.

purely as the breaking apart of habitat and does not always imply habitat loss. For
instance, holding habitat area constant, a landscape can either be fragmented (i.e.,
many patches) or unfragmented (i.e., one patch) (Figure 1.5). While habitat loss and
fragmentation are often confounded in real landscapes (i.e., they occur together),
we emphasize that it is important to determine which of these is ecologically
important; if populations respond to habitat fragmentation, land managers may be
able to design landscapes that mitigate risks.

Landscape fragmentation effects may be grouped into a few major categories,
including edge, patch size, and distance between patches (connectivity)
(Schmiegelow and Monkkdnen, 2002). For example, edges are the result of vege-
tation boundaries in the landscape and may result from (a) enduring features (soils,
drainage, slope); (b) natural disturbances; or (c) human activities such as forest
harvesting or farm development. An edge effect may be caused by differences in
moisture, temperature, and light that occur along the boundary between different
adjacent patch types (Saunders et al., 1991). A number of studies have reported
increased rates of predation at forest edges (Paten, 1994); however, this appears to
be context dependent (Batary and Baldi, 2004). Many organisms are affected by the
size of favorable habitat patches. Such species are termed area sensitive (Freemark
and Collins, 1992). Robbins et al. (1989) found that “area” was one of the most
significant habitat features for many neotropical migrant bird species. Area sensi-
tivity has also been observed for amphibians (Hager, 1998). Although some debate
exists about the area sensitivity of plants, a number of published studies reported
lower genetic diversity and higher rates of extinction in smaller populations (Bell
et al., 1991; Damman and Cain, 1998).

In some cases, fragmented landscapes have been shown to exhibit the same
characteristics as those observed in island archipelagos by MacArthur and Wilson
(1967). Isolation of habitat seems to compound the effect of small patch size on the
ability of some species to persist and recolonize. These findings can be understood
better if placed in the context of the concept of metapopulations. The metapopulation
concept requires that population dynamics be studied beyond the scale of local
populations. “Equilibrium,” rather than occurring in a single, local population, might
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occur as a result of a number of interconnected subpopulations that are distributed
across a region (Husband and Barrett, 1996). Population dynamics are the result of
a series of local extinctions and recolonizations in habitat patches (Levins, 1970).
If the subpopulation of one patch becomes extinct, then it may eventually be recol-
onized by dispersers from a subpopulation that exists in a neighboring patch. This
is the “rescue effect”; for a species to spread or persist, individuals must colonize
unoccupied habitat patches at least as frequently as populations become extinct
(Hanski and Ovaskainen, 2000). As fragmentation progresses, the distance between
patches (isolation) of mature forest increases. This distance limits the ability of
organisms to disperse and colonize new habitat patches.

It is important to note that, in addition to the studies briefly described above
indicating a significant influence of landscape pattern on species distributions, there
are many studies that reveal only weak or nonexistent landscape pattern effects (Delin
and Andrén, 1999; Game and Peterken, 1984; McGarigal and McComb, 1995;
Schmiegelow et al., 1997; Simberloff and Gotelli, 1984). Indeed, the majority of
evidence indicates that it is habitat loss rather than fragmentation per se that is the
most important influence on species occurrence, reproduction, and survival (Fahrig,
2003). This appears particularly to be the case in forest mosaics (for reviews, see
Bender et al., 1998; Mdnkkonen and Reunanen, 1999). This idea reinforces the notion
that it is important for remote sensing to provide accurate classifications of landscape
composition in addition to input data to analyses of landscape configuration.

Andrén (1994) proposed that landscape configuration is only important below
a threshold in the proportion of suitable habitat at the landscape scale. Only at low
levels of habitat are patches small and isolated enough to result in patch size effects
or restrictions in movement (Gardner et al., 1991). This results in multiplicative
impacts of fragmentation on habitat loss. A humber of theoretical studies supported
this “fragmentation threshold” hypothesis (Fahrig, 1998; Hill and Caswell, 1999;
Wiegand et al., 2005; With and King, 1999), but it has rarely been demonstrated in
nature (Trzcinski et al., 1999). However, this may be because “suitable habitat” has
rarely been defined according to the requirements of individual species.

PREDICTIVE MODELING OF SPECIES OCCURRENCE USING GEOSPATIAL DATA

To determine rates of change in the amount and pattern of habitat at any spatial
scale, it is clearly necessary to have accurate definitions of habitat for different
species. Remotely sensed data have been used extensively to develop habitat models;
these are inexpensive to develop in comparison to models based on detailed vege-
tation data collected in the field (Osborne et al., 2001; Vernier et al., 2002) and
provide an opportunity to generate predictions about species distributions over large
spatial extents at relatively fine resolutions (Betts et al., 2006; Gibson et al., 2004;
Linke et al., 2005). Such models are usually probabilistic in nature, but a wide range
of modeling techniques are available, including classification trees, neural networks,
generalized linear models, generalized additive models, and spatial interpolators
(Segurado and Araujo, 2004). Models have been developed to cover aspects as
diverse as biogeography, conservation biology, climate change research, habitat or
species management (Guisan and Zimmermann, 2000), and vegetation mapping (J.
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F. Franklin, 1995). As the resolution of remotely sensed data improves, the range
of potential applications is likely to increase (Coops et al., Chapter 2, this volume;
Waulder et al., 2004).

LANDSCAPE METRICS

To study the effects of landscape structure on ecological processes, it is necessary
to develop methods to quantify spatial patterns into measurable variables before
links to ecological processes can be determined (Frohn, 1998). Landscape metrics,
or indices, have been developed to meet this need (Diaz, 1996). Early landscape
metric studies presented only a few metrics, typically dominance (the degree to
which certain kinds of landscape patches or classes predominate in the landscape),
contagion (the extent to which similar patches are clumped together), and shape
(the form of an area or a patch as determined by the variation of its border) (Forman,
1995; O’Neill et al., 1988). Today, an extensive array or suite of landscape metrics
and indices exists (Elkie et al., 1999; McGarigal and Marks, 1995). The suite of
available landscape metrics can be considered to include specific measures of area,
edge, shape, core (or interior) area, nearest neighbor/diversity/richness/evenness,
interspersion/juxtaposition, contagion/configuration, and connectivity/circuitry
(Gergel, Chapter 7, this volume; McGarigal et al., 2000).

The large number of metrics that have been developed to describe and quantify
spatial structure often appears to be overwhelming, and the question of metric
redundancy has frequently arisen. Initially, use of metrics that have known ecological
relevance and application should be considered. However, some standard approaches
have been employed to deal with the issues of redundancy and number of metrics
for a given application. For example, Riitters et al. (1995) used a factor analysis to
reduce to a few components more than 50 specific landscape metrics applied to 85
maps of land use and cover in the United States. Recent studies have concluded that
it is possible to identify a parsimonious suite of metrics using principal components
analysis to characterize much of the spatial patterns existing in a boreal forest
landscape subject to many common disturbance processes (S. Cushman, personal
communication, April and October, 2002; Linke and Franklin, in press).

In addition to the issue of appropriate metric selection, there are several other
factors known potentially to influence the interpretation and use of landscape metrics
(Haines-Young and Chopping, 1996), including, for example, metric uniqueness,
sensitivity, abrupt versus continuous edges, statistical quantification, study area
extent, and scale or resolution. Another important characteristic of landscape metrics
to consider is their actual behavior over a wide range of landscape structures; the
instance of nonlinear landscape metric behavior over scale is briefly mentioned here:

1. Hargis et al. (1998) investigated the relationships between six landscape
metrics and the proportion of two landcover types across simulated land-
scapes, also controlling for the size and shape of patches. Most metrics
were linearly associated at the lower landcover proportion range but had
nonlinear associations at higher proportions, which limits their direct
comparability across different regions
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2. Such nonlinear metric behavior was also found in simulated landscapes
in a study of dispersal success on fractal landscapes (With and King,
1999) and in a study specifically designed to detect metric behavior under
controlled conditions (Neel et al., 2004)

An awareness of all of these interpretational effects and metric behavioral lim-
itations must be embedded in any landscape quantification attempt. A detailed
discussion of spatial pattern analysis using landscape metrics is presented by Gergel
in Chapter 7.

CONCLUSION

Understanding forest disturbance and spatial pattern is increasingly recognized as
essential to effective and sustainable forest management in many forest environments
around the world. We hope that this introduction has provided some insight into the
challenges that are further elaborated in later chapters; the developing appetite in
landscape ecology and conservation biology for spatial data and models that work
with complex phenomena; the relationships between pattern and process, process
and pattern; the specific details of remotely sensed and GIS data selection; the
importance of scale; the myriad issues in fire and insect, forest harvesting, and other
disturbance monitoring; and the emerging role of landscape metrics and modeling
landscapes. The literature and practice of forest disturbance and spatial pattern using
remote sensing and GIS approaches are diverse and increasing at an astonishing rate
as new perspectives and insights take hold. We expect this presentation will be useful
to those involved in this interesting and exciting endeavor, in the implementation
and continued development of remote sensing and GIS approaches, and in their
application to forest ecosystems and processes. We anticipate progress in these areas
will help shape future directions in the important work of forest resource mapping,
monitoring, and management.
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INTRODUCTION

An increasing number of remotely sensed data sources are available for detecting
and characterizing forest disturbance and spatial pattern. As the information that is
extracted from remotely sensed data is often a function of image characteristics,
matching the appropriate data source to the disturbance target of interest requires
knowledge of these image characteristics. Furthermore, an understanding of the
implications of the dependencies between imagery selected, disturbance of interest,
and change detection approach followed is required to facilitate the selection of an
appropriate data source. The method used to capture the disturbance information
must also be considered within the context that not all methods inherently support
all data sources and vice versa. The goals of this chapter are to identify the key
issues for consideration during the data selection process; highlight how these issues
have an impact on the successful detection and characterization of forest disturbance
and spatial pattern; and finally review the range of methods available for detecting
forest disturbances and emphasize the link between these methods and the selection
of an appropriate data source.

BACKGROUND

Observations of ecological disturbances have been acquired since remote sensing
technologies first became available (Cohen and Goward, 2004). Since the invention
of photography, it was apparent that images captured from the air provided important
information on the spatial patterns on the Earth’s surface (Colwell, 1960) and quickly
became critical for resource managers. As early as the 1910s, for example, barely
a decade after the first aerial remote sensing platforms were developed, the synoptic
view afforded by aerial sensors benefited a number of disciplines, including forestry
and ecology (Spurr, 1948). During the 1920s, improved camera systems for produc-
ing vertical aerial photographs with minimal distortion were developed (Thompson
and Gruner, 1980). As a result, the U.S. Department of Agriculture systematically
began to photograph agricultural lands throughout the United States in the 1930s
(Rango et al., 2002). By 1950, aerial photography was a standard tool for resource
managers concerned with mapping land cover and land use change (Goward and
Williams, 1997). Aerial coverage has continued to the present day to provide an
invaluable resource to examine the dynamics of spatial pattern (Goslee et al., 2003;
Rango et al., 2002).

Space-based remote sensing of the Earth’s surface began from Explorer 6 in 1959
and the Television Infra Red Observation Satellite (TIROS) National Oceanic and
Atmospheric Administration (NOAA) series of satellites began in 1960 (Goward and
Williams, 1997). Since then, imagery from the Advanced Very High Resolution
Radiometer (AVHRR) and more recently from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) sensors on TERRA and AQUA has made routine map-
ping of global vegetation possible (Cohen et al., 2002; Running et al., 1999). However,
these systems are principally designed for global coverage with low spatial resolution
(approximately 1 to 5 km), which is generally too coarse for monitoring localized or
regional disturbance events (Cohen et al., 2002). Imagery at much finer spatial scales,
at around 80 m, has been available since the launch of Landsat-1 in 1972 (Cohen
and Goward, 2004). Since then, a family of Landsat satellites have orbited the Earth,
with many other similar successful satellite programs initiated by other countries,
including France, India, Japan, and Russia (Stoney, 2004). Successful launches of
both commercial and government satellite programs over the past five years (and
those planned for the next five years) have resulted in a large increase in the number
of available satellite-based imaging sensors. In 2005, there were expected to be up
to 30 satellites with spatial resolutions ranging from 0.3 m to 2.5 km (Stoney, 2004).

As of the writing of this chapter, Landsat-5 is experiencing some technical
difficulties, and Landsat-7 is not operating as envisioned, with a scan line corrector
problem requiring the production of mosaicked image products. The status of the
Landsat sensors, both operationally and politically, is changing rapidly. While con-
tinuity of the collection of Landsat-like data is enshrined as public policy, the
continuity of the actual Landsat sensor program is currently not clear. Efforts are
under way to ensure some form of data collection of Landsat-like data. The actual
sensor, timing, and mechanisms for this to happen are currently not known. Current
information can be found at http://landsat.usgs.gov/.

SELECTION OF REMOTELY SENSED IMAGERY

As discussed by Linke et al. (Chapter 1, this volume), mapping and monitoring
landscape disturbance is highly scale dependent — both spatially and temporally.
As a result, the landscape patterns and processes that are discernible from any
particular remotely sensed image source are dependent on the target of interest (e.g.,
single tree versus stand-replacing disturbance) and the spatial, spectral, radiometric,
and temporal characteristics of the image source (Perera and Euler, 2000; Turner,
1989). These image characteristics must be considered during the data selection
process along with the methods and techniques that may be used to detect the change.
In addition, the information requirements of the end user must be considered. For
example, an end user interested in the total area disturbed by fire in a single year
may be satisfied with a simple binary classification indicating areas of fire and no
fire. Conversely, an end user interested in forest succession following a fire event
may require more detailed information on fire extent, as well as species composition
and abundance, to monitor the pattern of forest succession over time. Image char-
acteristics will dictate which image source is most appropriate for the given infor-
mation need.

The characteristics of a remotely sensed image are often collectively referred
to as the image resolution and relate to the size of individual pixels or picture
elements, the overall spatial extent of the image, the time interval of acquisition,
the level of detail or discrimination the sensor is capable of providing, the region(s)
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of the electromagnetic spectrum in which the sensor collects data, and the bit depth
of the sensor. Each of these image characteristics and the interactions between these
image characteristics, are addressed in the following sections. In addition, the
implications of these characteristics for data selection, in the context of forest
disturbance, are discussed.

SpATIAL REsoLUTION

The spatial resolution of a remotely sensed scene provides an indication of the size
of the minimum area that can be resolved by a detector at an instant in time (Strahler
et al., 1986; Woodcock and Strahler, 1987). In the case of aerial photography, the
spatial resolution is based on the film speed or size of the silver halide crystal (Nelson
et al., 2001). In the case of digital sensors, an instrument that has a spatial resolution
of 30 m is technically able to resolve any 30 m by 30 m area on the landscape as
one single reflectance response. The information content of a pixel is tied to the
relationship between the spatial resolution and the size of the objects of interest on
the Earth’s surface. If trees are the objects of interest and a sensor with a 30-m
spatial resolution is used, then many objects (trees) per pixel can be expected, which
limits the utility of the data for characterizing the individual trees. However, if forest
stands are the objects of interest and an image source with a 30-m pixel is used, a
number of pixels will represent each forest stand, resulting in an improved potential
for characterization of stand-level attributes. This relationship between pixels and
objects was fully characterized by Woodcock and Strahler (1987). The area that is
covered by a single remotely sensed image (spatial extent or image footprint) is
principally a function of the sensor swath width or field of view (Lillesand and
Kiefer, 2000; Richards and Jia, 1999). Instruments with a low spatial resolution
typically have the capacity to capture larger areas. For example, Landsat Thematic
Mapper (TM; considered a medium spatial resolution sensor) images have a spatial
extent of 185 by 185 km with a spatial resolution of 30 m (for most of its spectral
bands). Conversely, the NOAA AVHHR sensor has a much larger swath width and
subsequently covers a greater area (2394 by 2394 km) with a spatial resolution of
between 1.1 and 6 km (Richards and Jia, 1999), with the range in spatial resolution
due to off-nadir (i.e., not directly beneath the sensor, but at an angle) scanning during
data capture.

The generalized description of spatial resolution indicates an expectation of the
nature of the information that is captured (Woodcock and Strahler, 1987). High
spatial resolution data may provide detailed information on objects as finite as
individual trees, streams, or buildings; however, the image footprint or spatial extent
is also typically limited (e.g., 10 by 10 km), often precluding use of this data for
large area studies for both feasibility and cost reasons (Wulder, Hall, et al., 2004).
Historically, medium spatial resolution sensors (such as Landsat TM and SPOT
multispectral imagery) have provided the optimal resolution for characterizing large
areas with comprehensive coverage while maintaining an ability to describe land-
scape-level phenomena, such as land cover change and regional disturbance (Fran-
klin and Wulder, 2002; Woodcock et al., 2001). Further, the nature of the patterns
identified from high spatial resolution data differs from those captured from lower
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spatial resolution data (e.g., trees vs. stands). Gergel (Chapter 7, this volume)
addresses issues related to the investigation of high spatial resolution data with
landscape pattern metrics. Traditional trends in landscape pattern metrics found when
analyzing Landsat or lower spatial resolution data will not necessarily be found
when analyzing higher spatial resolution data as the patterns represent different
surface or vegetation characteristics.

Figure 2.1 provides an example of how the information content of a remotely
sensed image can vary with spatial resolution. Figure 2.1A is a Landsat-7 Enhanced
Thematic Mapper Plus (ETM +) multispectral image representing an area of approx-
imately 8 km?2. With the 30-m spatial resolution of the ETM+ data, broad-scale
features such as forest stands, harvest blocks, and roads are discernible. A subarea
representing approximately 0.5 km? is shown in Figure 2.1B and Figure 2.1C. Panel
B is a portion of a multispectral QuickBird image with a spatial resolution of 2.44
m. At this spatial resolution, individual trees can be identified. In the Figure 2.1C,
a portion of a digital aerial photograph with a 0.30-m pixel is shown; individual
trees can be resolved with greater detail than in the QuickBird image, and further-
more, the attributes associated with these individual trees can be characterized. For
example, trees damaged by mountain pine beetle appear red in the digital photo
(note that the same area of red-attack damage is also present in the QuickBird image).

LIDAR (light detection and ranging) data represent the three-dimensional struc-
ture of the surface or vegetation canopy. LIDAR systems emit a pulse of laser
infrared radiation and measure the time (and therefore distance) it takes for the
pulse to reach and then be reflected by the surface (Lefsky and Cohen, 2003).
LIDAR data are typically collected as single points or profiles; therefore, the land
surface is sampled rather than fully imaged, resulting in noncontiguous data. Most
airborne systems have a point spacing between 1 to 5 m depending on the system
configuration and flying altitude and speed, which may be customized to meet user
needs (Lim et al., 2003). These points are in turn processed to represent ground and
canopy elevation surfaces.

When selecting a data source for forest disturbance mapping, spatial resolution
will be a key decision. Table 2.1 outlines the optimal applications associated with
different spatial resolutions. Generally, broad-scale phenomena (covering large areas,
for which general trends are of interest) are best characterized by low spatial reso-
lution imagery (e.g., for monitoring trends in vegetation cover across North Amer-
ica). Conversely, high spatial resolution data are more appropriate for investigating
disturbances that require a greater level of spatial detail, such as tree-level distur-
bances. For example, Figure 2.1 demonstrates that high spatial resolution data such
as QuickBird or aerial photography would be required to capture tree-level damage
caused by the mountain pine beetle.

The spatial extent of data sources must also be considered in conjunction with
data costs. Low spatial resolution data sources typically cover larger spatial extents
and are less expensive; therefore, the per unit cost for these data sources is less
than medium- or high-resolution data sources. Conversely, high spatial resolution
data sources generally have smaller spatial extents and higher per unit costs. In
addition, high spatial resolution data also present additional challenges for project
logistics; image files tend to be large and cumbersome to store, manipulate, and
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FIGURE 2.1 (See color insert following page 146.) lllustration of differing information
content for three images with differing spatial resolution located near Merritt, British Colum-
bia, Canada. Panel A is an approximately 8 km? area of 30-m spatial resolution Landsat 7
ETM+ multispectral imagery (Path 46/Row 25) collected on August 11, 2001. The 0.05-km?
focus area in Panel A is represented in Panels B and C. Panel B is 2.4-m spatial resolution
QuickBird multispectral imagery collected on July 17, 2004. Panel C is a digital ortho-image
with a spatial resolution of 30 cm collected on August 22, 2003.
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TABLE 2.1
Relationship Between Scale and Spatial Resolution in Satellite-Based Land
Cover Mapping Programs

Spatial
resolution Nature of suitable forest disturbance targets
Low Disturbances that occur over hundreds or thousands of meters (small scale); detectable
with sensors such as GOES, NOAA AVHRR, MODIS, SPOT VEGETATION
Medium Disturbances that occur over tens or hundreds of meters (medium scale); detectable with
sensors such as Landsat, SPOT, IRS, JERS, ERS, Radarsat, and Shuttle platforms
High Disturbances that occur over scales of centimeters to meters (large scale); detectable with

aerial remote sensing platforms (e.g., photography), IKONOS, QuickBird

Source: Adapted from Franklin and Wulder, 2002.

process. Furthermore, the increased spectral variability of high spatial resolution
imagery can confound many commonly used image classification methods (Wulder
et al., 2004). Careful thought must therefore be given to the information need and
the spatial resolution as higher spatial resolution data will not necessarily provide
better information.

TemPORAL RESOLUTION

The temporal resolution provides an indication of the time it takes for a sensor to
return to the same location on the Earth’s surface. The revisit time is a function of
the satellite orbit, image footprint, and the capacity of the sensor to image off nadir.
The timing of image acquisition should be linked to the target of interest. Some
disturbance agents may have specific biowindows (e.g., fire, defoliating or phloem-
feeding insects) during which imagery must be collected to capture the required
information (Wulder, Dymond, et al., 2004), while other disturbances may be less
specific (e.g., harvest). For ongoing programs designed to monitor forest change
before and after a disturbance event, the acquisition of images should occur in the
same season over a series of years (known as anniversary dates). Anniversary dates
are critical to ensure that the spectral responses of the vegetation remain relatively
consistent over successive years (Lunetta et al., 2004). In addition, a reduction in
image quality may also occur due to nonoptimal sun angles and reduced illumination
conditions; as a result, off-year imagery is typically preferred over off-season imag-
ery for remote sensing mapping applications (Wulder, Franklin, et al. 2004). For
some applications, however, the capacity to incorporate temporal resolution can be
advantageous. For example, analysis of vegetation at both leaf-on and leaf-off times
can provide important information on the pattern of understory vegetation and
nondeciduous canopy condition (Dymond et al., 2002). Temporal resolution of
airborne sensors is less critical as, in many cases, image collection is undertaken on
demand, often coincident with insect outbreaks or fires (Stone et al., 2001).
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FIGURE 2.2 Comparison of spatial resolution and image footprint of current medium spatial
resolution satellites (satellites and sensors listed in more detail in Table 2.2).

There are often trade-offs between image spatial and temporal resolution that
have implications for data selection. Generally, high spatial resolution imagery has
a smaller footprint (or image) size, and it takes longer for the satellite to revisit a
location on the Earth’s surface at nadir than broader scale imagery. However, many
high-resolution sensors have the capacity to tilt or position the sensor at an angle,
thereby allowing locations on adjacent swaths to be acquired. This results in satellites
such as IKONOS and QuickBird (with short revisit times, varying from 1 to 3.5
days depending on latitude of target location); however, images acquired will be off
nadir. Medium-resolution satellites such as Landsat revisit the same location once
every 16 days. The relationship between spatial resolution and footprint (or image)
size for other medium spatial resolution systems is presented in Figure 2.2.

SPECTRAL RESOLUTION

Spectral resolution provides an indication of the number and the width of the spectral
wavelengths captured by a particular sensor The spectral resolution of standard
black-and-white aerial photography is known as panchromatic and spans the com-
plete visible portion of the electromagnetic spectrum, along with some portion of
the near-infrared spectral wavelengths, with a single image band or channel. Sensors
with more bands and narrower spectral widths are described as having an increased
spectral resolution. Currently, most operational remote sensing systems have a small
number of broad spectral channels: Landsat ETM+ data have seven spectral bands
in the reflective portion of the electromagnetic spectrum and one band in the thermal-
infrared region. Hyperspectral data (e.g., instruments with more than 200 narrow
spectral bands) are becoming more widely available (Vane and Goetz, 1993), both
on space-borne (such as the HYPERION sensor on the EO-1 [Earth Observer-1]
platform) and airborne platforms such as HyMap (Cocks et al., 1998), CASI [Com-
pact Airborne Spectographic Imager] (Anger et al., 1994), and the NASA AVIIS
[Advanced Airborne Visible/Infrared Imaging Spectrometer] (Vane et al., 1993). The
width and locations of these bands along the electromagnetic spectrum determine
their suitability for forest disturbance applications. For example, a subtle spectral
response, such as foliage discoloration, might manifest in a very specific region of
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the electromagnetic spectrum and may therefore be more effectively detected with
a hyperspectral instrument, whereas a dramatic change, such clearcutting, is dis-
cernible in a wide range of spectral wavelengths.

Remote sensing imagery is often categorized as either active or passive. Passive,
or optical, remotely sensed data are collected by sensors sensitive to light in the
400- to 2500-nm region of the electromagnetic spectrum (encompassing the visible,
near-infrared, shortwave, mid- and long-infrared regions of the spectrum), which
includes detection of reflected light and temperature (such as weather or meteoro-
logical satellites). Passive remotely sensed data are the type most commonly used
for vegetation studies and forest disturbance applications; Examples include aerial
photography, Landsat, SPOT, IKONQOS, and QuickBird.

Active remote sensing systems are characterized as those that emit energy, in
one form or another, and then measure the return rate or amount of that energy back
to the instrument. These active sensors can therefore operate under expanded mete-
orological conditions as the sun’s illumination is not required. Microwave and
LIDAR systems are examples of active sensors that provide the energy illuminating
the surface and record the backscattered radiation from the target (Lefsky and Cohen,
2003). The most common implementation for microwave sensors is synthetic aper-
ture radar, which utilizes microwave wavelengths of 1 mm to 1 m, about 2000 to 2
million times the wavelength of green light (500 nm) (Lefsky and Cohen, 2003).
The choice of active versus passive systems for forest disturbance mapping will
depend on the information need. Since active sensors can operate regardless of
weather, they may be most effectively used in areas where there is perpetual cloud
cover (e.g., tropical rain forests). Terrestrial LIDAR sensors typically capture a single
spectral band, often between 900 and 1064 nm (Lefsky and Cohen, 2003). New
disturbance mapping opportunities are enabled through the repeated collection of
LIDAR data representing differing time periods, such as monitoring of forest gap
dynamics and growth (St-Onge and Vepakomma, 2004).

RADIOMETRIC RESOLUTION

Radiometric resolution provides an indication of the actual information content of
an image and is often interpreted as the number of intensity levels that a sensor can
use to record a given signal (Lillesand and Kiefer, 2000). The finer the radiometric
resolution of a sensor, the more sensitive it is to detecting small differences in
reflected or emitted energy. Thus, if a sensor uses 8 bits to record data, there would
be 28 = 256 digital values available, ranging from 0 to 255. However, if only 4 bits
were used, then only 24= 16 values ranging from 0 to 15 would be available, resulting
in reduced radiometric resolution. Most low- and medium-resolution remotely
sensed data commercially available are 8 bit. High-resolution data such as QuickBird
are 11 bit. In terms of data selection for forest disturbance, radiometric resolution
is the least critical of all of the image characteristics considered in this chapter as
the sensors available for mapping of land cover and dynamics typically have a
minimum of 8 bits. Given the option, it is usually better to use data with greater
radiometric resolution; generally, users should receive data in the original bit format
and not data that have been resampled to a lower radiometric resolution.
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RESOLUTION INTERACTIONS AND IMPLICATIONS

The variety of remote sensors onboard the array of satellites operated by public and
private agencies that are currently orbiting the Earth and collecting data at various
spatial, temporal, radiometric, and spectral resolutions renders the compilation of
an exhaustive list of remote sensing systems difficult. For a comprehensive listing
of remote sensing instruments and missions, refer to the work of Glackin and Peltzer
(1999) as well as to sources on the Internet, which provide additional details on
existing and planned remote sensing systems (e.g., Stoney, 2004). Relevant attributes
of the most common systems are summarized in Table 2.2, and an indication of
commonly used sensors with a range of spatial and spectral characteristics is pro-
vided in Figure 2.3. When selecting an appropriate image source to capture forest
disturbance information, the information needs of the end users must guide the
selection of data with consideration of spatial, spectral, and temporal resolutions.
Logistical issues, such as metadata, data storage, file manipulation, and data costs
must also factor into the decision.

Once the relative merits of spatial, temporal, spectral, and radiometric properties
have been considered relative to the target and information need, an appropriate data

TABLE 2.2
Characteristics of Select Low, Medium, and High Spatial
Resolution Sensors

Footprint Spatial Resolution Spectral Resolution
Sensor (km?) (m) (¥ (nm)

Low Resolution Sensors

NOAA 17 (AVHRR) 2940 1100 500-1250
SPOT 4 (VEGETATION) 2250 1000 430-1750
Terra (MODIS) 2330 500 366-14385

Medium Resolution Sensors

Landsat-5 (TM) 185 30 4502350
Landsat-7 (ETM+) 185 30 (MS/SWIR); 15 (pan) 4502350
SPOT 2 (HRV) 60 20 (MS); 10 (pan) 500-890

SPOT 4 (HRVIR) 60 20 500-1750
SPOT 5 (HRG) 60 10 (MS); 20 (SWIR) 5001730
IRS (RESOURCESAT-1) 141 235 520-1700
Terra (ASTER) 60 15 530-1165
EO-1 (HYPERION) 37 30 433-2350

High Resolution Sensors

Orbview-3 8 4 (MS); 1 (pan) 450-900
QuickBird-2 16.5 2.44 (MS); 0.6 (pan) 450-900
IKONOS 13.8 4 (MS); 1 (pan) 450-850

* MS = multispectral, SWIR = shortwave infrared, pan = panchromatic.
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FIGURE 2.3 Spatial resolution and approximate spectral resolution of multispectral sensors
commonly used for vegetation mapping. Shaded blocks represent different spectral bands.
Blocks of narrower width tend to indicate a sensor with greater spectral sensitivity. 2 CASI
channels programmable in size; > 2 nm width depending on application (Anger et al., 1994).
b Hyperion collects 220 bands of spectral data over the spectral range of 400 to 2500 nm.

source may be selected. Following data selection, a series of preprocessing steps is
typically required to prepare the data for further analysis. The preprocessing require-
ments are particularly necessary when multiple dates of imagery are used to char-
acterize forest disturbance or change events in general. Radiometric and geometric
processing methods are addressed in the following section.

RADIOMETRIC AND GEOMETRIC PROCESSING

Success in disturbance identification is dependent on robust radiometric and geo-
metric preprocessing (Lu et al., 2004; Trietz and Rogan, 2004). Once the most
appropriate remotely sensed imagery has been selected to monitor the disturbance
and its spatial pattern, detection of this variation either spatially or temporally is
only possible if changes in the phenomena of interest result in detectable changes
in radiance, emittance, or backscatter (Smits and Annoni, 2000). Thus, it is critical
that the change in signal is attributable to a real change in the land surface rather
than a change in nonsurface factors such as atmospheric conditions, imaging and
viewing conditions, or sensor degradation (Hame, 1988); radiometric processing is
applied to image data to minimize the impacts of these factors on subsequent image
analysis procedures. Similarly, the geometric matching of two or more scenes must
be accurate, as image misregistration can have a large influence on the change
detection results (Smits and Annoni, 2000). The following sections detail those
processing steps required to prepare the imagery for further analysis.
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RADIOMETRIC PROCESSING

Data, as acquired by a remote sensing instrument, are affected by many sources of
radiometric error and therefore require some form of radiometric processing prior
to the application of image analysis techniques used to extract disturbance informa-
tion (Peddle et al., 2003). A critical requirement for successful detection of distur-
bance and time series analysis is the correct derivation of the true change in radio-
metric response over time. In many portions of the electromagnetic spectrum, the
atmosphere has a significant impact on the signal sensed by satellite or airborne
sensors due to scattering and absorption by gas and aerosols (Song et al., 2001).

Approaches to radiometric correction are typically described as absolute or
relative (or a mixture of both). Absolute methods involve extracting the reflectance
of a target at the Earth’s surface and require detailed information regarding the actual
atmospheric conditions at time of overpass, such as water vapor content and aerosol
optical thickness, to adjust the imagery using radiative transfer theory (Peddle et al.,
2003). A limitation to absolute atmospheric correction methods is the requirement
for detailed atmospheric data that are rarely routinely available at the location or
time of satellite overpass, especially when the analysis is retrospective. Relative
radiometric correction methods are designed to reduce atmospheric effects and
variability between multiple images by using common features in the two images
that have invariant spectral properties (Chen et al., 2005). The choice of whether to
use an absolute or relative radiometric correction method depends on many factors;
refer to the work of Chen et al. (2005) and Song et al. (2001) for a more detailed
discussion on the relative merits of each approach. It should be noted that some
analysis methods have been developed using specific data types (e.g., ground surface
reflectance); therefore, if the user intends to implement these methods, he or she
must ensure that the data are corrected to the appropriate level. The topics included
in this chapter cover fundamental radiometric considerations: conversion of raw
image values or digital numbers (DNs) to radiance; conversion of radiance values
to reflectance; and normalizing imagery to minimize the impact of different atmo-
spheric or illumination conditions. A more thorough and detailed discussion of
radiometric processing considerations is provided by Peddle et al. (2003) and Hall
et al. (1991).

The methods described here, although generic in the sequence of steps that
must be followed to complete the correction, are somewhat specific to Landsat
products due to the long history of Landsat data usage. Research and methods for
the radiometric processing of other sensors are becoming increasingly available
(e.g., Pagnutti et al., 2003; Wu et al., 2005). Conversion of the sensor signal to
surface reflectance requires that the raw DNs be first converted to radiance and
then to reflectance. Conversion to at-satellite radiance (also known as top of atmo-
sphere, TOA) is required if imagery from different sensors is to be compared (e.g.,
Landsat TM and ETM+) and is achieved using the following equation (Markham
and Barker, 1986):

Rad; = DN; x Gain; + Offset; (2.1)
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where i is the band number fori=12,3,4,5,7; Rad, is the TOA radiance of band
i; DN; is the DN of band i; Gain; is the gain of band i; and Offset; is the offset of
band i.

Gains and offsets are provided in the header file for the imagery, or standard
parameters specific to the sensor of interest are available from a variety of sources
(e.g., Ekstrand, 1996; Huang et al., 2002; Markham and Barker, 1986).

The radiance values are then converted to reflectance using the following equa-
tion (Huang et al., 2002):

Re f, = (Rad, x 1 x d2) / (ESUN, x sin(@)) 2.2)

where i is the band number for i =1,2,3,4,5, 7; Re f; is the TOA reflectance of band
i; Rad; is the TOA radiance of band i; d is the Earth-Sun distance in astronomical
units; ESUN; is the mean solar exoatmospheric irradiance of band i; and 6 is the
Sun elevation angle.

The Earth-Sun distance d can be determined by a lookup table based on the
Julian day when the data were acquired (Irish, 2000). The mean solar exoatmospheric
irradiances for Landsat-7 ETM+ bands are provided in Irish (2000), with information
for other sensors also available (e.g., Pagnutti et al. 2003; Tuominen and Pekkarinen,
2005). The Sun elevation angle 6 either can be found in the raw data header file or
calculated based on the time and date of data acquisition. This conversion to TOA
reflectance is necessary to correct for variation caused by solar illumination differ-
ences as well as cross-sensor differences in spectral bands.

When multiple images are used for change detection, disparities between the
different image dates may persist (even after conversion to TOA reflectance) as a
result of different atmospheric conditions and viewing and illumination geometries.
To reduce these disparities, images undergo a normalization step (Du et al., 2002;
Heo and Fitzhugh, 2000; McGovern et al. 2002; Yang and Lo, 2000). A number of
variations on the normalization technique exist; however, most require use of a set
of reference sites that appear over the entire image sequence. The sites, also known
as pseudoinvariant features (Schott et al., 1988), are generally well-defined spatial
objects in the scene that are interpreted as spectrally homogeneous and stable over
time (Furby and Campbell, 2001). Both light and dark features can be used and
often include lakes, mature even-age forest, dunes, and roads. Equations are then
derived for all spectral channels to ensure these spectral features remain consistent
over a temporal sequence of images (Yang and Lo, 2000).

GEOMETRIC CORRECTION AND IMAGE COREGISTRATION

In its raw state, satellite imagery contains spatial distortions that are a function of
the acquisition system (e.g., factors associated with the sensor platform such as
viewing angle, orbit, altitude, and velocity) or a function of external factors (e.g.,
effects of the Earth’s curvature, relief displacement, and deformations resulting from
map projections). Some of these distortions are systematic and are routinely cor-
rected by the data vendor before the data are distributed. Other distortions are more
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difficult to fix and require the use of models or mathematical functions (Toutin,
2003). The term geometric correction refers to the processes used to correct spatial
distortions; geometric correction is required to align remotely sensed imagery with
other data sources and to combine multiple images, to either mosaic multiple images
over large areas or coregister multiple images collected over the same location at
different times. Geometric misregistration of images can be a significant source of
error, and minimizing this error is a time-consuming task when undertaking change
detection or data fusion methods (Dai and Khorram, 1998). Typically, a desirable
target for geometric registration is an error of less than half a pixel. This ensures
that misregistration does not introduce error into change detection results (Dai and
Khorram, 1998; Igbokwe, 1999). It has been noted, however, that a misregistration,
often reported as a root mean square error, of less than one pixel can be difficult to
obtain (Gong and Xu, 2003).

Generally, all geometric correction methods require the collection of ground
control points (GCPs), which are points concurrently identified from a corrected
source (e.g., basemap, corrected image) and an uncorrected image source. The
differences in the X and Y positions of these points between these two sources are
used to compensate for spatial distortions in the uncorrected image. In the case of
orthorectification, the Z position (or elevation) is also used for the correction. A
summary of geometric correction methods are provided in Table 2.3, while a more
detailed treatment of methods is provided by Toutin (2003, 2004). Geometric cor-
rection methods typically take one of two forms: parametric or nonparametric.
Nonparametric methods are considered suitable for low-resolution imagery, while
parametric methods are necessary for high-resolution imagery. In the context of
mapping forest disturbance, geometric correction is critical if a change detection
approach is used and if the resulting disturbance information is to be integrated into
other spatial databases.

METHODOLOGIES FOR DISTURBANCE MAPPING

Once appropriate radiometric and geometric corrections have been applied, the
image data are ready for analysis. The overriding objective when detecting landscape
change and disturbances is to compare data from a series of points in time by (a)
controlling all extrinsic factors caused by differences in variables that are not of
interest and (b) assessing the real changes caused by the variable of interest (Lu et
al., 2004). Therefore, as discussed in the previous section, minimizing and removing
factors such as atmospheric attenuation and scattering, illumination, viewing distor-
tion, and poor coregistration is critical to ensure the observed change is real. A wide
variety of detection algorithms and time series approaches have been developed to
detect change and disturbances in imagery, and selecting and implementing the most
appropriate method is an important process in change detection studies. A number
of current reviews exist (Coppin et al., 2004; Gong and Xu, 2003; Lu et al., 2004).
Singh (1989) defined 11 categories of change detection techniques that can broadly
be grouped into five distinct approaches: (a) image algebra (differencing, subtraction,
or ratioing) of two or more images; (b) regression or correlation, in which a model
is developed that predicts or compares spectral responses of a series of images; (c)
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statistical techniques such as the tasseled cap transformation (TCT) and principal
component analysis (PCA) that computes statistical components, which are then
compared for temporal changes; (d) classification comparisons, by which images
are classified separately, and the resulting classifications are compared; and (e) the
increasing use of tools that analyze images and other data sets within a geographical
information system (GIS). Each of these methods is discussed in detail in the
following sections.

IMAGE ALGEBRA

The use of simple algebraic operations to assess levels of change and disturbance
through a time series of images is a commonly applied, relatively easy, and straight-
forward technique. The approaches all have the common characteristic of selecting
either constant or dynamic thresholds to determine through time when and if a
change has occurred. In this category of methods, two aspects are critical for the
change detection results: selecting suitable image bands or vegetation indices and
selecting suitable thresholds to identify the changed areas (Lu et al., 2004). The
most commonly applied index is the normalized difference vegetation index (NDV1),
which is the normalized ratio of the near-infrared and red regions of the spectrum
(Eqg. 2.3).

| _ (NIR-R)

NDVI = -——=
(NIR+R)

(2.3)

where R is the reflectance in the red, and NIR is the reflectance in the near infrared.

In the near-infrared region of the spectrum, within-leaf scattering is high, and
as a result, reflected radiation from the canopy is also high. Conversely, in the red
component of the spectrum, high absorption by pigments results in low radiation
reflection. Consequently, changes in vegetation amount and cover, as well as the
photosynthetic capacity of the vegetation, are typically positively related to an
increase in the difference between near-infrared and red radiation (Peterson and
Running, 1989; Price and Bausch, 1995).

A number of additional indices are based on theory similar to NDVI, such as
the enhanced vegetation index (EVI) (Eq. 2.4) and specialty indices that incorporate
the shortwave and mid-infrared spectral regions (such as the NDVIc [NDVI fire
index]) (Eqg. 2.5) and the normalized burn ratio (NBR) (Clark and Bobbe, Chapter
5, this volume; Hudak et al., Chapter 8, this volume; Key and Benson, 2005) (Eq. 2.6).

EVI =G* NIR =R (2.4)
NIR+C,R-C,B+L

Dy = (NR=R)., - (SWIR — SWIR, ;)

(NIR +R) (SWIR,,, — SWIR,,,,)

(2.5)
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_ (NIR — SWIR)

NBR =
(NIR + SWIR)

(2.6)

where B is the reflectance in the blue; R is the reflectance in the red; NIR is the
reflectance in the near infrared; SWIR is the reflectance in the shortwave or mid-
infrared spectral channels; and G, C,, C,, and L are user-specified constants.

At the broad scale, Potter et al. (2003) utilized a sequence of long-term AVHRR
monthly spectral vegetation indices from 1982 to 1999 to identify major global distur-
bance events. Monthly vegetation indices were compared to a derived 18-year long-
term average. The majority of the disturbance events (predominantly fire related)
occurred in tropical savannah, scrubland, or boreal forest ecosystems. The analysis
concluded that nearly 9 Pg of carbon have been lost from the terrestrial ecosystem to
the atmosphere as a result of large-scale ecosystem disturbances. At the landscape
scale, Nelson (1983) used the difference of the near-infrared spectral channels from
Landsat MSS to delineate areas of gypsy moth defoliation. Lyon et al. (1998) undertook
a comparison of seven spectral indices from three different dates to detect land cover
change and concluded that changes in NDVI1 provided the best detection of vegetation
change. In addition to using Landsat data, imagery from other sensors can be incor-
porated. For example, Stow et al. (1990) found that ratioing red and near-infrared bands
of a Landsat MSS-SPOT high-resolution visible image (HRV) multitemporal pairs
produced substantially higher change detection accuracy (about 10% better) than ratio-
ing similar bands of a Landsat MSS—-Landsat TM multitemporal pair (Lu et al., 2004).

IMAGE REGRESSION OR CORRELATION

More advanced methods of change detection can include the use of geometric
models, spectral mixture models, and biophysical parameter models. In these
approaches, multidate change is computed from physically based parameters such
as leaf area index or biomass values, which are in turn computed from reflectance
values. These transformed variables are preferred over simple vegetation indices for
facilitating the interpretation of change and the extraction of vegetation information
(Hall et al., Chapter 4, this volume; Lu et al., 2004). Adams et al. (1995) applied
spectral linear unmixing approaches to extract spectral end-members, including
healthy vegetation, nonphotosynthetic vegetation, exposed soil, and shade, and then
analyzed changes in these spectral members as surrogates for land cover change.
Rogan et al. (2002) applied a similar approach using Landsat imagery. Within a
biophysical model framework, combinations of spectral bands as well as other data
such as climate can be used to assess disturbance and land cover change. For
example, monitoring phenological patterns of vegetation and its subsequent change
is possible using a range of techniques, including measures of similarity (Coops and
Walker, 1996), Fourier analysis (Andres et al., 1994), wavelet theory (Meyer, 1990),
and harmonic analysis (Jakubauskas et al., 2001).

Bennett (1979) provided a mathematical overview of spatial time series analysis.
With these techniques, the emphasis is not only on temporal change but also on the
shape characteristics of the temporal change. Lambin and Strahler (1994) used three
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indicators — vegetation indices, land surface temperature, and spatial structure
derived from AVHRR — to detect land cover change. Lawrence and Ripple (1999)
utilized eight Landsat TM scenes to monitor changes in vegetation through time
using fitted statistical models between each date to assess changes in overall vege-
tation cover. A key advantage of using these profile-based techniques that link with
other data sets such as climate is that the full variation in the phenological cycle is
resolved as data are collected throughout the growing season. As a result, changes
linked to seasonality can be separated from other land cover changes and distur-
bances. A disadvantage is that typically only coarse spatial resolution imagery has
a high enough temporal frequency to develop the necessary temporal profiles. This
limits the change categories that can be detected and monitored (Coppin et al., 2004),
although some research has taken place using time series to monitor ecosystem
disturbances at finer spatial resolutions (e.g., Coops et al., 1999; Rogan et al., 2002;
Sawaya et al., 2003).

STATISTICAL TECHNIQUES

Rather than a simple ratio of spectral channels, more refined transformations of the
input spectral bands have been promoted as a technique to extract information about
vegetation disturbance. One advantage of statistical approaches is that they reduce
data redundancy between bands and emphasize different information in derived
components (Lu et al., 2004). The most commonly applied techniques are based on
PCA and the TCT (Crist and Cicone, 1984). Although the use of principal compo-
nents to derive multitemporal change can be difficult to ascertain without a detailed
understanding of the eigen structure of the data, the link between vegetative change
and TCT has been shown to be generally more robust (Collins and Woodcock, 1996;
Coppin et al., 2004). Simplistically, the TCT are guided and scaled PCA, which
transform the Landsat bands into channels of known characteristics; soil brightness,
vegetation greenness, and soil/vegetation wetness. Changes in these components
over time can therefore reflect changes in the vegetation characteristics.

Cohen et al. (1998) contrasted the brightness and greenness components of a
TCT output to assess changes in forest biomass in the Pacific Northwest of the
United States from 1976 to 1991 and found harvest activity was detected in over
90% of the known clearcuts. As the wetness component contrasts the sum of the
visible and near-infrared bands with the longer infrared bands to estimate vegetation
or soil moisture, it has been used with success to detect forest disturbances through
time. The difference between wetness indices calculated for multiple dates (known
as the enhanced wetness difference index) has been used to discriminate partial
harvesting with a per-pixel accuracy of approximately 71% (Franklin et al., 2000).

This technique has also been applied by Skakun et al. (2003) to detect red-attack
damage caused by mountain pine beetle (Dentroctonus ponderosa Hopkins) in stands
of lodgepole pine (Pinus contorta). Skakun et al. (2003) used multitemporal Landsat
ETM+ imagery that was corrected and processed using the TCT to obtain wetness
components that were differenced to reveal spatial patterns of insect attack. Classi-
fication accuracy of red-attack damage based on this method ranged from 67% to
78%. In Figure 2.4, the use of TCT wetness to map mountain pine beetle red-attack
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FIGURE 2.4 (See color insert following page 146.) lllustration of TCT wetness difference
image with pixel-level insect infestation locations noted in yellow. Spatial information layers
can be developed from the pixel-based infestation locations, such as Panel B, showing the
pixel-based disturbance information aggregated as a proportion on a per hectare basis, and
Panel C, in which the pixel-based disturbance is summed as an area estimate in hectares on
a forest inventory polygon basis.
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damage is presented. Pixel-based locations of insect attack are a single example of
the types of information products that can be generated using this, or other, types
of pixel-based change detection approaches. The Landsat pixel-based insect attack
can be generalized to represent 1-Ha grid cells or forest inventory polygons. These
grid or polygon representations of red-attack damage enable the pixel-based infor-
mation to be ingested by models or to be incorporated into forest inventory databases.

Coppin and Bauer (1994) also examined changes in forest cover through use of
the TCT components as well as simple vegetation indices (such as NDVI) and found
that changes identified the most important forest canopy change features, and that
these can be adequately expressed as a normalized difference. One key advantage
of the TCT method over other statistical methods such as PCA, and as highlighted
through these studies, is that the transformations are independent of the image scenes,
while PCA is dependent on the image scenes (Lu et al., 2004).

IMAGE CLASSIFICATION

As an alternative to monitoring changes in the spectral response of vegetation before
and after a disturbance event, another common technique of monitoring vegetation
disturbance and pattern is to categorize all pixels in an image automatically into a
series of land cover classes or themes and then compare the size and extent of the
classes. This process of image classification can be either guided by human inter-
pretation (known as supervised classification) or based principally on the statistical
distribution of the spectral classes in the image (known as unsupervised classifica-
tion). Image classification formed the basis of research investigating the differences
in the structure and function of anthropogenic versus natural disturbance regimes
(Tinker et al., 1998). Although natural processes (such as fire and windthrow) alter
forest pattern, the landscape patterns produced by these processes is generally
different from disturbances due to forest harvesting and associated road building. A
single Landsat scene was used to classify a number of vegetation land cover and
disturbance types. Several landscape pattern metrics were derived for the landscape
as a whole and for the forest cover classes, and the relative effects of clearcutting
and road building on the pattern of each watershed were examined. At both the
landscape and cover class scales, clearcutting and road building resulted in increased
fragmentation as represented by a distinct suite of landscape structural changes
(Mladenoff et al., 1993; Tinker et al., 1998; White and Mladenoff, 1994).

A similar approach was adopted by Bresee et al. (2004), who utilized six images
acquired from 1972 to 2001. A supervised classification was used to classify the six
dominant land cover types in the area, including two disturbance classes, nonforested
bare ground, and regenerating forest or shrub. Changes in the size and degree of
fragmentation of each of the natural and disturbed land cover classes were then
assessed over the 27-year period. Results indicated that changes in management
objectives and natural disturbances have had a clear influence on landscape patterns
and composition in the region throughout the past 30 years. The presence and
temporal variability of windthrow events, disease outbreaks, and changes in stump-
age value all greatly influenced the composition and structure of the forest stands
(Bresee et al., 2004).
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Cohen et al. (2002) compared over 50 Landsat scenes in the Pacific Northwest
to monitor changes in disturbance patterns due to harvesting and fire over the past
30 years. An unsupervised classification approach was used to label pixels as dis-
turbed, undisturbed, or confused. A trajectory for each pixel was then determined
through time to provide overall maps of disturbance of the area. The historical
imagery and mapping of spectral classes representing forest disturbance indicated
that harvest rates were lowest in the early 1970s, peaked in the late 1980s, and then
decreased again in the mid-1990s. By comparing managed and natural disturbance
regimes through time, an understanding can be developed on the relative impact of
management regimes on ecosystems (Cohen et al., 2002).

The comparison of two image classifications representing different dates to find
change does need to be undertaken with care as the accuracy of each of the individual
classifications effectively limit the accuracy of the final change layer (Fuller et al.,
2003). For instance, if two classifications were to be used to find a 17% change with
75% reliability, both source classifications would require an accuracy of approxi-
mately 97% (Fuller et al., 2003).

GIS APPROACHES

The significant development of GIS and its widespread adoption in natural resource
management, coupled with developments in modeling of terrain and climate, have
resulted in the development and implementation of models that integrate remote
sensing observations with other spatial data sets (Rogan and Miller, Chapter 5, this
volume). The advantage of using GIS within a change detection analysis is the
capacity to incorporate a range of data sources into each change detection appli-
cation. Lo and Shipman (1990) used overlay techniques to detect urban develop-
ment using multitemporal aerial photography and to map quantitatively, changes
in land use. With the availability of different types of satellite imagery and the
capacity to digitize and analyze maps, these GIS functions offer convenient tools
for land use and land cover change detection studies (Lu et al., 2004), especially
when the change detection involves long period or multiscale land cover change
analysis (Petit and Lambin, 2001). This type of change detection, with its ability
to combine multisource data sets, is the focus of ongoing research into the inte-
gration of GIS and remote sensing techniques for better implementation of change
detection analyses.

OPERATIONAL CONSIDERATIONS

While the capability to monitor both vegetation disturbance and vegetation succes-
sion has been demonstrated with satellite and airborne image data sets (Foody et
al., 1996), it is critical to recognize that disturbances not resulting in complete stand
replacement (such as selective thinning) and successional processes that involve a
slow change in species composition can be difficult to detect and classify (Table
2.4). Forest disturbance can be characterized by type (e.g., phenological, fire, disease,
etc.); duration (e.g., days, months, years); spatial extent (e.g., tree, stand, watershed);
rate (e.g., slow, medium, fast); and magnitude (e.g., small, medium, large) of the
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TABLE 2.4

Major Types of Forest Change, Their Duration, Spatial Extent, Rate (on a
Daily Basis), and Magnitude

Time lapse Disturbance

Type of change (duration) Spatial extent severity Rate
Phenological Days to months All levels Medium Medium
Regeneration Days to decades Individual-stand ~ Small Slow
Climatic adaptation Years All levels Small Slow
Wind throw/flooding ~ Minutes to hours  Individual-stand  Large Medium to fast
Fire Minutes to days All levels Large Fast
Disease Days to years All levels Small to large  Slow to medium
Insect attack Days to years All levels Small to large  Slow to fast
Mortality Days to years All levels Large Slow to fast
Pollution Years Stand-watershed ~ Small to large  Slow
Silviculture Days Stand-watershed ~ Large Fast

(thinning/pruning)
Clearcutting Days Stand-watershed  Large Fast
Plantation Days to decades Stand-watershed ~ Small Fast

Source: After Gong, P. and Xu, B., in M.A. Wulder and S.E. Franklin (Eds.), Remote Sensing of Forest
Environments: Concepts and Case Studies (pp. 301-333), Kluwer Academic Publishers, Norwell, MA,
2003.

disturbance. The interactions of these elements for a given disturbance combine to
suggest the type of imagery that should be selected, the date range over which the
images should span, and the area of coverage required.

The type of change (as identified in Table 2.4) has an influence on likelihood
of detection using remote sensing image-based change detection procedures. Stand
replacement disturbances (such as wildfire, clearcut logging) are more likely to be
detected due to both their large visible extents and large change in vegetation
structure and function (Cohen et al., 2002). In Figure 2.5, a relationship between
the severity (or magnitude) and the accuracy that may be expected is portrayed. The
notion is that subtle changes are more difficult to detect and map than dramatic
changes. For instance, the removal of 10% of the stand volume to a partial harvest
is more difficult to detect and map than a 40-Ha clearcut, resulting in lower mapped
attribute accuracy or a lower detection likelihood. As a result, the expected accuracy
when mapping changes in forest structure through partial harvesting is lower than
when mapping clearcutting. The theory is supported through selected references
included with Figure 2.5. The size (extent) of the disturbance also has an impact on
the detectability as a function of the relationship between the spatial resolution and
the objects of interest.

Following any classification or feature identification, some form of accuracy
assessment is recommended, and requisite statistics for accuracy estimates should
be calculated (Stehman and Czaplewski, 1998). It is important that independent
training and validation data sets are used for the assessment of accuracy (Stehman,
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Subtle changes:
partial harvest, defoliation

Stand replacement disturbances:

clearcut harvesting, burns

Typical accuracy (%)

Upper Confidence Interval e

" Lower Confidence Interval

Severity/contiguousness of disturbance

Description  Accuracy Level Reference
Defoliation 42-58% Heikkila et al., 2002
Non-Stand Partial cut 55-80% Wilson and Sader, 2002
Replacement ) N .
Disturbance Partial cut 55-70% Franklin et al., 2000
Partial cut 55-80% Jin and Sader, 2005
Wildire 74-98% Wright Parmenter et al., 2003
. Clearcut, wildfire 88% Cohen et al., 2002
Stand Replacing | .\ iciro 76% Miller and Yool, 2002
Disturbance
Clearcut 79-96% Wilson and Sader, 2002
Clearcut >90% Cohen et al., 1998

FIGURE 2.5 A theoretical representation of the increase in accuracy and decrease in confi-
dence intervals (assuming equal sample sizes) associated with forest disturbance detection
as disturbances on the forest landscape become more severe (e.g., increase in size) or more
contiguous. Disturbances that are small and heterogeneous over the landscape, such as
defoliation or partial harvesting, are generally more difficult to detect with remotely sensed
data (depending on the spatial resolution of the data). Furthermore, the spectral variability
associated with these disturbances is greater, making repeat detection of these non-stand-
replacing disturbances less probable (i.e., the precision of these estimates is low). Conversely,
larger and more spatially contiguous disturbances are generally mapped with greater consis-
tency and greater accuracy, hence the narrowing of the confidence intervals for these stand-

replacing disturbances.
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1997). The data types that are commonly used are field and air photographs, other
forms of purpose-collected data, and questioning or participation of knowledge-
able stakeholders. The types of errors that emerge are characterized as either
commission (falsely mapped changes) or omission (missed changes). The use of
nonindependent data will typically yield a biased accuracy assessment (Rochon
et al., 2003). Alternatively, if there is a lack of other independent observations
with which to assess the accuracy of the output, statistical methods such as
bootstrapping can help ensure that an unbiased estimate of the accuracy is devel-
oped. It is also acknowledged that the collection and use of training and validation
data that reflect landscape changes can be problematic due to logistical and cost
reasons. When mapping a single attribute of landscape disturbance, the collection
of training and validation data are simplified by the number of classes under
consideration; in this case, categorical transitions are from nondisturbed forest to
some preidentified disturbance state, such as a harvest or insect attack. Analyses
that are capturing a more broad range of changes require training and validation
data that represent the full range of categorical transitions that are occurring or
are expected to occur.

The accuracy assessment of the results of remote sensing change detection
applications can be problematic due to the nature of the validation as it can be based
on the process or the resultant products. The type, magnitude, and extent of the
change (as presented in Table 2.4 and Figure 2.5) combine to influence the efficacy
of the change detection approach. The nature of the change detection approach and
the types of data used can also influence the ability of the analyst to capture the
changes and the portrayal of the accuracy results. Operational limitations to valida-
tion are acknowledged, leading to an understanding that there is not a single best
practice for the training and accuracy assessment of change detection results (Ste-
hman et al., 2003).

CONCLUSIONS

In summary, when developing and applying remotely sensed time series data to assess
forest change and disturbance, users should consider a range of important issues:

e Ensure the temporal and spatial scale of the disturbance phenomena
monitored is well matched to the spatial, temporal, radiometric, and
spectral resolution of the chosen remotely sensed imagery. In addition,
ensure the data source can provide the information that the end user
requires (e.g., a simple binary map showing disturbance areas versus a
more complex product).

« Effective preprocessing is critical to successful forest disturbance detec-
tion and mapping. Once the imagery has been selected, it is crucial that
the imagery is (or has been) calibrated to ensure that an observed change
in signal is attributable to “true” change in the land surface rather than a
change due to nonsurface factors such as different atmospheric conditions,
imaging and viewing conditions, or sensor degradation. If multiple images
are used (e.g., time series), then the images must be spatially aligned
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precisely. High-quality geometric matching of the images is important to
ensure that spurious change detection results do not occur.

e A variety of image-processing techniques exists to analyze change and
detect disturbance regimes in remotely sensed observations. The method
should be considered at the data selection stage, as not all data support
all methods and vice versa. Select the most appropriate method (e.g.,
established or new spectral indices, statistical-based methods, image clas-
sification, or modeling) based on the desired outcome and level of com-
plexity associated with the information needs of the end user.

e The increased use of GIS coupled with developments in modeling of
terrain and climate have resulted in increasing interest in integrating
changes in the spectral response with other spatial data sets within process-
based modeling approaches. These models are providing useful informa-
tion at regional and continental scales on ecological, hydrological, and
physiological processes.

e Finally, some description or documentation of the accuracy of the distur-
bance or change mapping is required to provide users with an understanding
of the reliability or limitations of the products produced. The description
of the results of the change procedure can be heuristic or systematic and
quantitative. The user can take the accuracy description and use this to guide
the confidence placed on the change product for a given application.
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INTRODUCTION

The economic value of the timber, paper, and fuel products extracted from forests
has made forest harvesting one of the primary agents of forest disturbance globally.
In addition to economic importance, forest harvests can have significant ecological
consequences. Harvest levels have in some cases been observed to significantly affect
wildlife habitat (Curtis and Taylor, 2004; Richards et al., 2002) and influence bio-
geochemical (Cohen et al., 1996; Hassett and Zak, 2005) and hydrological (Swank
et al., 2001) cycles. This chapter summarizes a range of forest harvest practices by
way of creating a framework for understanding data and method considerations
specific to forest harvest detection. There are several thorough reviews of digital
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change detection methodology (Coppin et al., 2004; Gong and Xu, 2003; Singh,
1989). With those works as background, the focus here is on how the physical
characteristics of various silvicultural operations influence data and method consid-
erations in the change detection process. A case study involving detection of stand-
replacing harvests in the Pacific Northwest of the United States of America is used
to illustrate the process of selecting data and methods to address a particular set of
analytical and mapping needs.

SILVICULTURAL OPTIONS

Silviculture is the science of manipulating ecological processes with a goal of
shaping the structure of a forest stand to meet management goals. Harvesting, in
addition to often yielding merchantable forest products, is a primary tool in this
manipulation. The term harvest is used here to represent the cutting of any trees,
even if that cutting does not produce salable products. In this section, harvests are
broken into three different kinds of cuts: regeneration harvest, thinning, and salvage.
This organization of harvest operations is based on silvicultural intent; regeneration
harvest is intended to stimulate growth of a new cohort of trees, thinning is intended
to stimulate growth of existing trees, and salvage is regeneration neutral, focusing
mainly on extracting dead or dying trees that would otherwise become unusable.
Salvage harvests have also on occasion been classified as a type of thinning when
undertaken to remove suppressed trees proactively (e.g., Smith et al., 1997). How-
ever, only salvage that follows another disturbance is discussed in this chapter.

Although it is true that most remotely sensed data are fundamentally quantitative
and not always suited to identifying silvicultural distinctions based on long-term
intentions, there are nevertheless good reasons for becoming familiar with silvicul-
tural theory. First, the management records often used as reference data in harvest
mapping projects are likely to describe harvests in silvicultural terms (e.g., Franklin
et al., 2000). Also, awareness of typical harvest strategies, some of which include a
number of stand entries, can facilitate interpretation of the spectral data. This is
particularly true if certain assumptions based on forest type and ownership can be
used to predict likely harvest strategies in a given region. This section describes
differences between regeneration, thinning, and salvage cuts and discusses the role
of these harvest types within specific silvicultural systems.

REGENERATION HARVEST

Regeneration harvest (often called stand-replacing harvest) involves the removal of
trees with the intention of stimulating the development of a new cohort of trees. In
silvicultural systems using even-age stands, regeneration harvests can take the form
of a clearcut, where all trees are removed, or a retention harvest, where some trees
are allowed to survive for a variable length of time into the next rotation (Figure
3.1). Clearcuts are often chosen by industrial forest landowners because they are
simple to administer and because they create exposed conditions that favor a large
group of commercially important shade-intolerant species (Oliver, 1981). There are
several reasons that a landowner may temporarily retain trees in what otherwise



Remotely Sensed Data in the Mapping of Forest Harvest Patterns 65

Clearcut Regeneration Harvest

FIGURE 3.1 (See color insert following page 146.) Common harvest practices represented
in color orthophotos and tasseled cap-transformed (Crist and Cicone, 1984) Landsat data.
Both sets of images were acquired in 2002 and show closed-canopy coniferous forests in
central Washington State.

would be a clearcut: as a seed source, to moderate microclimatic conditions for the
new cohort in a “shelterwood” capacity, or simply to diversify the structure of the
succeeding stand for wildlife or aesthetic purposes (British Columbia Ministry of
Forests, 2003). Trees in these systems may be left in densities and spatial distribu-
tions that are as various as the reasons for leaving them. The confusing aspect of
retention cuts from the point of view of the remote sensing analyst is that even if
retained trees are left in detectable densities, their sometimes gradual removal can
occur at a stage when the rest of the stand is growing vigorously.

Related to even-age regeneration harvests are conversion cuts. Cutting all or
most of the trees in a stand for the purpose of changing to a nonforest land use is
not technically a silvicultural treatment, so it has no place in established silvicultural
systems. Nevertheless, forest conversion is common throughout the world, particu-
larly in the tropics, where shifting agricultural systems are employed (Achard et al.,
2002). Losses of forest are also common on the forest/urban interface (Kline et al.,
2004). While initially indistinguishable from even-age regeneration harvests, con-
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version cuts become identifiable over time as they fail to show a spectral signature
consistent with forest recovery.

Some regeneration harvests are designed to create a multiage stand structure.
Often called selective harvests, these cuts take out at least enough canopy and
understory trees to stimulate regeneration of a new cohort. The intensity of removal
can vary depending on the growth properties of the new trees, the preharvest structure
of the stand, and both long- and short-term economic concerns. The management
of multiage forests is considerably more complex than even-age forest management,
primarily because competition must be managed between cohorts as well as within
cohorts. Commitment to this more complex management by industrial forest owners
is not common (Maguire, 2005); in practice, true selection harvests typically occur
in places where, perhaps for wildlife or aesthetic reasons, uneven stand structure is
a goal in itself.

THINNING

The silvicultural distinction between partial regeneration harvest and thinning is that
regeneration harvest is intended to stimulate the growth of a new cohort of trees,
whereas thinning is not. Smith et al. (1997) outlined four distinct approaches to
thinning that are summarized here: low thinning, crown thinning, selective thinning,
and geometric thinning. Low thinning involves the removal of trees below a chosen
size. Usually, this means removing trees from suppressed and intermediate crown
classes to benefit trees in co-dominant and dominant positions. This system is tradi-
tionally most common when suppressed trees are merchantable, often as firewood
(Smith et al., 1997). A considerable amount of attention has recently been given to
this type of thinning as a means to reduce forest fuels in fire-prone landscapes in the
American west (Brown et al., 2004; Fight, 2004), although other types of thinning
have also been considered (Fiedler, 2004). Low thinning has likewise been considered
as a way to remove the less-vigorous trees that are particularly vulnerable to insect
attack (Oliver and Larson, 1996). Recent forest legislation makes thinning that
reduces forest health risks, a management priority (Healthy Forests Restoration Act,
2003), so low thinning may occur on public lands with increasing frequency.

As opposed to low thinning, which eliminates trees with growth rates that have
already been suppressed, crown thinning involves the harvest of trees in the upper
canopy classes to favor more vigorous or better-formed competitors. This practice is
much more common than low thinning on industrial forest land for at least two
reasons. First, the products of crown thinning are more often merchantable than the
by-products of low thinning. Second, since it is large, vigorous trees that are removed,
more of the site’s resources are released to remaining trees, resulting in larger gains
in the annual increment of the “crop” trees (Smith et al., 1997). Thinning of dense
young stands also falls into this category, although the trees cut in these cases typically
have limited commercial value. Such density management thins are common not only
in intensively managed plantations, but also in naturally regenerated stands (Doruska
and Nolen, 1999; Wilson and Oliver, 2000). Smith et al. (1997) suggested that this
type of thinning makes most sense on poor sites where the limitation of a critical
resource prevents structural differentiation of the canopy into distinct strata.
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The third type of thinning, selective thinning, may appear quite similar to crown
thinning in that both involve the thinning only of trees in the upper strata. The
difference between the two approaches lies in the selection of trees to be left. Crown
thinning involves cutting co-dominants to favor dominant trees, whereas in selective
thinning dominants are cut to favor promising trees in co-dominant or subordinate
crown positions. A practice that may resemble either harvest type involves the
removal of trees with more regard for species than canopy class. This practice is
used in the tropics in places where only a few trees per hectare may be merchantable.

Geometric thinning is the removal or destruction of all trees in a regular pattern,
usually in lines or nonlinear strips (Figure 3.1). This type of thinning is most often
used as an expeditious way to reduce density in intensively managed young planta-
tions, although it is also used in older, less-intensively managed stands where growth
has stagnated and canopy differentiation has not occurred (Smith et al., 1997). In
practice, it is common for more than one of the above thinning systems to be
combined because of multiple management goals or the relatively high cost of each
entry. Thus, the possibility of significant removals from all canopy classes should
be allowed in the measurement of thinning activities.

SALVAGE

Salvage cuts are used to extract wood products from stands that have been injured
by insects, fire, disease, or some other disturbance. Salvage harvests are often
aggressively pursued by industrial forest landowners because of their need to recover
the economic value of the dead trees. However, salvage is less common by public
agencies, which are often charged to manage forests for both economic and non-
economic values. Accessibility also influences the likelihood of salvage cuts; trees
have a finite window of merchantability after mortality, and there often is not enough
time to extend the infrastructure necessary for salvage.

Salvage cuts are different from the other types of harvest in that the harvested
trees’ photosynthetic contribution to canopy reflectance has either ended or been
diminished prior to removal. This makes it difficult to detect a salvage thinning as
an event separate from the initial disturbance. While new forest roads in a stand
following a disturbance may be an indication of harvesting, many salvage operations
are conducted by helicopter (Donovan, 2004), and others use existing road networks.
Because of the fundamental difficulty in separating salvage cuts from the mortality
resulting from the disturbances that precede them, salvage cuts are not considered
in the following sections.

DATA CONSIDERATIONS FOR HARVEST DETECTION

Coops et al. (Chapter 2, this volume) describe major issues involved with using
remotely sensed data to detect forest disturbances. With Chapter 2 as background,
this section focuses on considerations of remotely sensed data that are specific to
the detection and characterization of harvests. As described in the preceding section,
harvest types vary in tangible ways, including: the stratum of the canopy that is
removed, the vigor of remaining trees, the expected response of the understory, and
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the patchiness of removal. Since all of these factors can influence the reflective
properties of a stand, this section makes use of previously described silvicultural
distinctions as a framework for understanding the spatial, temporal, and spectral
resolution issues surrounding the remote detection of harvest.

SPATIAL PROPERTIES

The spatial resolution required of the data supporting harvest mapping depends
largely on the dimensions of the forest changes to be mapped. Woodcock and Strahler
(1987) suggested that spatial resolution should approximately match the spatial scale
of the features of interest. If cells are much larger than the features to be detected,
the spectral signal of the features will be averaged with and perhaps lost in the
“noise” of spectrally dissimilar neighboring areas (Lefsky and Cohen, 2003). If
spatial resolution is significantly finer than features of interest, cell values will
display the reflective properties not of the features themselves but of their physical
components, resulting in unnecessary within-feature spectral variation.

The most commonly used remotely sensed data for harvest mapping have come
from sensors such as Landsat and SPOT (Systeme pour I’Observation de la Terre)
that have functional resolutions of 10-100 m (e.g., Alves et al., 1999; Cohen et al.,
2002; Franklin et al., 2000; Heikkonen and Varjo, 2004; Jin and Sader, 2005; Sader
et al., 2003; Saksa et al., 2003; Varjo, 1996; Woodcock et al., 2001). SAR (synthetic
aperture radar) data have also been resampled to this resolution for harvest mapping
(Ranson et al., 2003). This grain size is fine enough in relation to the size of most
harvest units that the ratio of boundary pixels influenced by exterior conditions is
relatively small compared to the number of interior pixels. However, this resolution
does not allow identification of individual or small groups of trees that have been
either cut or retained through the harvest process. While the presence of these trees
may be inferred through modeling (e.g., Collins and Woodcock, 1996; Healey et al.,
2006), the spatial averaging that occurs in the Landsat/SPOT range of resolution
precludes explicit mapping of the removal and retention patterns that distinguish the
various harvest practices described in this chapter.

A variety of sensors, including digital frame camera platforms such as Airborne
Data Acquisition and Registration (ADAR) and satellite-based systems like IKONOS
and QuickBird have the ability to detect removal of large individual trees (Clark et
al., 2004; Read et al., 2003). Although high-resolution sensors have been little used
in regional harvest detection, they represent a potential means to better distinguish
cuts that target co-dominant trees (i.e., crown thinning and selective harvest) from
those that target typically broader dominant trees (i.e., selective thinning and high-
grading) and those that remove no canopy trees (low thinning). The low thinning
that is obscured from passive optical systems by the overstory could potentially be
directly measured with canopy-penetrating technologies such as interferometric syn-
thetic aperture radar and laser altimetry (LIDAR). However, to our knowledge, no
work on this approach has been published, however.

Coarser spatial resolution data, including data from the AVHRR (advanced very
high resolution radiometer) and MODIS (moderate resolution imaging spectrorad-
iometer) platforms, have been used to map land cover changes across large areas
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(Lambin and Ehrlich, 1997), but individual disturbances can be difficult to isolate
at that scale (Ehrlich et al., 1997). Zhan et al. (2002), using 250-m MODIS data,
were able to detect large-scale natural disturbances such as fire and flooding with
relatively high accuracy. They found mapping of small-scale harvests, however, to
be more problematic. Potter et al. (2005) used time series of 8-km AVHRR data to
identify sudden decreases in fraction of photosynthetically active radiation over 20
years in the Pacific Northwest. According to finer-scale maps produced with Landsat
data, these events roughly corresponded to large wildfires and periods of accelerated
harvests. For calibrating global carbon models, the purpose and scale for which it
was designed, this algorithm produced satisfactorily detailed information about
harvest levels.

For mapping individual harvests, however, the majority of harvest detection
projects have used medium spatial resolution data (e.g., Landsat). Although the
silvicultural distinctions that may be possible through the use of high spatial reso-
lution imagery (e.g., IKONOS) would communicate a good deal about managerial
intentions and the likely future stand development, the tradeoff discussed in Chapter
2 of this volume between spatial resolution and spatial extent, has thus far limited
the role of such data in harvest detection.

TeEmMPORAL PROPERTIES

The element of change in harvest mapping places particular emphasis on the tem-
poral dimensions of the source data set. The remeasurement frequency must match
the duration of the harvest signal, and measurements must be available that cover
the time period of interest. Before discussing issues of temporal resolution, the
relatively straightforward issue of temporal extent is mentioned. If digital source
data is required for a period prior to the mid-1990s, the choice of platforms includes
CORONA (operational from 1959 to 1972), Landsat (launched in 1972), AVHRR
(launched in 1978), and SPOT (launched in 1987). This is not to suggest, however,
that harvest detection must limit itself to historical data sources as it moves forward.
For example, several harvest-mapping programs have successfully bridged the spec-
tral and spatial differences between Landsat Multi-Spectral Scanner (MSS) and
Landsat Thematic Mapper (TM imagery) (Alves et al., 1999; Cohen et al., 2002;
Lunetta et al., 1998; Woodcock et al., 2001). Rigina (2003) combined declassified
CORONA panchromatic high-resolution imagery from 1964 with both Landsat and
Indian Remote Sensing 1C panchromatic imagery from 1996 to study forest decline
and disturbance in Russia. The same objectives could also be accomplished with
digitized historical aerial photos. Further cross-platform efforts should be expected
as the constellation of remote sensing platforms evolves.

For the sake of simplicity, comparative discussions of temporal resolution in
this section assume a Landsat-like data source of medium spatial and spectral
resolution. A distinction must be made between the temporal resolution of a partic-
ular sensor (i.e., potential overpass frequency) and the temporal resolution of the
data set assembled for a harvest detection project. While it may be beneficial to
possess a temporally dense sample of remotely sensed data, particularly to the extent
that it allows separation of harvest and phenological change (Coppin et al., 2004),
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the cost of acquiring and coregistering imagery can strictly limit the number of dates
considered (e.g., Lunetta et al., 1998). There are also cases in which very high
temporal resolution can be counterproductive. If a harvest is carried out over months
or years as a series of light removals, the spectral signal of what in aggregate may
be a significant harvest could be rendered imperceptible when spread out over several
monitoring periods. This scenario is most likely in areas where shelterwood retention
harvests are common.

More common, though, is the concern that if the monitoring interval is too long,
harvest signal will be lost or diluted because of postharvest canopy regrowth. This
regrowth can take the form of regeneration of desired species and their competitors
in the case of regeneration harvests, or it can take the form of canopy expansion in
trees remaining after a thinning. Regeneration harvests generally produce a spectral
signal that may be long-lasting (i.e., several years) but is also dynamic. Although
the trees that regenerate following these harvests often grow quickly because of
newly abundant site resources, the time required for this regeneration to appear and
then the rate at which it grows can be highly variable across a landscape (Yang,
2004). Ecosystem productivity may play a role in how quickly harvest signal decays
(Healey et al., 2005) and so may ownership-dependent variables such as pre- and
postharvest site preparation. A survey of some of the many projects focused on
detection of clearcuts (Banner and Ahern, 1995; Cohen et al., 2002; Hayes and
Sader, 2001; Masek, 2005; Saksa et al., 2003) revealed remeasurement intervals
ranging between 2 and 14 years. As a general rule, if harvest is to be mapped in
terms of intensity and not just occurrence, fairly high temporal resolution will be
required to minimize the degenerative effects of growth on the harvest signal.

Although no study based solely on remotely sensed data has characterized
harvests according to the silvicultural framework outlined, a few have partial harvests
as a separate class. Franklin et al. (2000), working in New Brunswick, and Fischer
and Levien (2001) in California were able to map harvests with fairly high accuracies
into broad categories of intensity using Landsat TM data separated by five years.
Working in Maine, Jin and Sader (2005) found that while five-year monitoring
intervals produced clearcut maps nearly as accurate as those using two-year intervals,
annual or biennial imagery was preferable for characterizing less-intensive harvests.
Healey et al. (2006) used two-year intervals in Washington to produce continuous
estimates of cover loss and basal area removal. In choosing the remeasurement
frequency for a harvest-mapping project, consideration should be given to the sta-
bility of the harvest signal in relation to the level of detail required by the change
detection process (recall Figure 2.5). Signal decay is influenced both by regional
harvest practices and local revegetation rates. If fine distinctions between harvest
levels are to be mapped or if light removals must be detected, then more frequent
data collection will be needed.

SPECTRAL PROPERTIES

For the detection of harvests, the ideal remotely sensed data will sample the areas
of the electromagnetic spectrum that best separate the forest canopy from whatever
mix of soil and vegetation is exposed when trees are removed. The better the contrast
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FIGURE 3.2 Reflectance patterns of three physical components of a study scene. (Adapted
from Lefsky, M.A. and Cohen, W.B., in M. Wulder and S. Franklin, Eds., Methods and
Applications for Remote Sensing: Concepts and Case Studies (pp. 13-46), Kluwer Academic
Publishers, Norwell, MA, 2003, with kind permission of Springer Science and Business
Media.) Wavelengths measured by the Landsat TM bands (B1-B5, B7) are also shown.

in reflectance between disturbed and undisturbed forest, the more easily canopy
removal can be measured. Factors that influence the spectral contrast between canopy
and background include species composition, soil properties, shadow patterns, and
canopy density. The ability to predict wavelengths at which reflectance from canopy
and background are most different can help not only in the choice of satellite, but
also in targeting useful bands.

Figure 3.2 presents end member reflectances of soil, conifer needles, and decid-
uous leaves from a local spectral library (modified from Lefsky and Cohen, 2003).
For simplicity, if these three elements were the only reflective components of a
scene, then the general response in any spectral region could be predicted for a given
harvest practice. Since the three components in Figure 3.2 differ little at the 400-
to 530-nm range, a relatively slight response would be expected if a harvest was to
realign their relative weights in the composite spectral response. Alternately, a
substantial signal would be observed in the 1600-nm region if a harvest removed
the conifer component, leaving an equal mix of hardwoods and soil reflectance. If
the background were made up purely of soil, then the harvest signal at this range
would be even more pronounced.

Familiarity with the spectral effects of the harvest practices to be encountered
can inform the choice of the spectral characteristics of a project’s source data. The
above scenario is, of course, a simplification of the factors affecting reflectance.
Factors like logging slash, skid trails, herbaceous composition, species shifts, and
shadow can make the interpretation process more complex (Danson and Curran,
1993; Franklin et al., 2000; Nilson et al., 2001; Olsson, 1994). A number of harvest
mapping projects have focused on the contrast between reflectance in the visible
range (particularly in the red), which is strongly absorbed by vegetation, and the
near infrared, which is not (e.g., Banner and Lynham, 1981; Hayes and Sader, 2001,
Miller et al., 1978; Singh, 1989; Zhan et al., 2002). The majority of these studies
utilized transformations such as the normalized difference vegetation index to accen-
tuate the red/near-infrared contrast.
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Strong evidence has emerged that the shortwave infrared (SWIR) portion of the
spectrum contains information that greatly improves characterization of changes in
forest structure (Skole and Tucker, 1993; Cohen and Goward, 2004; Collins and
Woodcock, 1996; Lu et al., 2004; Skakun et al., 2003; Williams and Nelson, 1986).
As can be seen in Figure 3.2, significant separation exists between soil and vege-
tation reflectance in the SWIR range (B5 and B7), so reducing the fractional
contribution of vegetation through harvest should result in higher reflectance in this
range. This is generally the case, while visible reflectance typically also increases,
and near-infrared reflectance decreases (Franklin et al., 2000). Figure 3.3a illustrates
this pattern as observed in a study of partial harvest in Washington (Healey et al.,
2006). The similarity between these data and results from Finland presented by
Olsson (1994) suggest a relatively consistent response among regions. The wetness
index of the tasseled cap transformation (Crist and Cicone, 1984), which is a contrast
between the sum of the visible/near-infrared bands and the sum of the SWIR bands,
is commonly used with Landsat data to amplify the changes in SWIR in harvest
detection (Cohen and Goward, 2004; Franklin et al., 2000). Healey et al. (2006)
found a strong relationship between wetness change and degree of basal area
removal (Figure 3.3b).

Although the wetness transformation is orthogonal to the other tasseled cap
indices (Crist and Cicone, 1984), the results presented in Figure 3.3b clearly suggest
a strong negative correlation between brightness and wetness in forest change space.
This putative correlation was used by Healey et al. (2005) to reduce tasseled cap
space to a single axis called the disturbance index, which is oriented in the presumed
direction of increasing canopy removal. Jin and Sader (2005) mapped harvests using
the normalized difference moisture index (NDMI), which contrasts near infrared
and SWIR. NDMI-derived maps were similar in accuracy to maps produced with
tasseled cap wetness, and NDMI can be used with sensors for which no tasseled
cap transformation has been developed.

The above studies were carried out with sensors of low-to-medium spectral
resolution. Little use has thus far been made of hyperspectral imagery to map
harvests. Likewise, although a number of groups are currently investigating the
potential for using LIDAR in harvest detection, little has been published in this area
(Lefsky and Cohen, 2003). A good deal of work has been done with SAR in the
microwave portion of the spectrum to detect clearcuts and conversion cuts. Intensity
of backscattering in this range can be significantly different in forests and clearings,
and this difference can be used to map canopy openings (Drieman, 1994; Ranson
et al., 2003; Saatchi et al., 1997; Yatabe and Leckie, 1995). Coherence of the return
signal phase between two dates can also be used to identify harvests (Antikidis et
al., 1998; Smith and Askne, 1997, 2001; Wegmdller and Werner, 1995), although
care must be taken in image acquisition because radar imagery can be sensitive to
seasonal (Cihlar et al., 1992) and weather differences (Smith and Askne, 2001).
Texture images have also been derived from SAR data and have been used to aid
in the identification of clearcuts (Luckman et al., 1998; Sanden and Hoekman, 1999).
Measurements of partial harvests have not yet been made with SAR, however with
different wavelengths of microwave energy able to penetrate to different depths of
the canopy (Jet Propulsion Laboratory, 1986; Treuhaft et al., 2004), there exists the
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FIGURE 3.3 Changes in Landsat reflectance values (a) and tasseled cap indices (b) associated
with a range of basal area removals in central Washington. Basal area removal was inferred
from stump data combined with harvest permit records. Digital counts of Landsat imagery
corresponding to pre- and postharvest conditions were converted to ground reflectance units
using the COST model described by Chavez (1996). Tasseled cap values were calculated
using coefficients described by Crist and Cicone (1984). Landsat bands are displayed with
associated wavelengths (in micrometers).

possibility of directly monitoring understory removals in stands in which the over-
story is unaltered.

HARVEST METRICS

Coppin et al. (2004) suggested that any approach to digital change detection includes
both a change extraction algorithm and a set of rules for separating or labeling
meaningful levels of change. These authors described ten categories of change
extraction routines, the most common of which were postclassification comparison
(delta classification), multidate composite analysis, univariate image differencing,
image ratioing, and change vector analysis. Milne (1988), Singh (1989), and Coops
et al. (Chapter 2, this volume) also discussed and categorized methods for detecting
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ecological change. The use of any of these processes depends on the identification
of a measurement variable that is specifically relevant to the type of change studied.

Considerable variation exists in how harvests are labeled. The first section of
this chapter described a hierarchy of harvest types based on silvicultural principles.
However, vernacular usage of many silvicultural terms is sometimes inconsistent.
Since the mapping process requires the identification of an attribute that is at least
internally consistent, care should be taken in choosing a harvest measure that is
both useful and unambiguous. This section focuses on how the effects of harvest
may be conceptualized in a mapping context. It should be emphasized that all of
the harvest variables to be discussed can be mapped with a range of levels of
precision, depending on the quality of the supporting data and the ability of the
chosen change extraction algorithm to identify necessary distinctions. Levels of
precision may include simple detection of the presence/absence of harvest activity,
classification of harvests into two or more categories, or estimating harvest effects
as a continuous variable.

There are at least three ways that the changes resulting from harvest may be
mapped: in terms of the general intensity of canopy removal; as a change in a
particular biophysical variable (e.g., biomass, cover, density); or by silvicultural
harvest type. The majority of published harvest detection studies identified harvests
that remove most of the canopy; these harvests are alternately called forest cutovers
(Hall et al., 1989), clearcuts (Banner and Ahern, 1995), and stand-replacing harvests
(Cohen et al., 2002). Such studies typically create a binary map identifying cuts
from specific time periods. Many such efforts lack either the reference data or the
image spatial resolution to ensure a consistent silvicultural definition of the cuts that
are mapped. However, any retention harvests that may be loosely classified as
clearings are likely to resemble clearcuts in terms of percentage canopy removal.
Thus, in practice, the attribute of interest in these maps is general canopy reduction.
As a broad measure of harvest level, this attribute has value both in the monitoring
of industrial management activities (Sader and Winne, 1992) and as an element of
large-scale ecological processes (Cohen et al., 1996).

More specific quantification of the canopy removal resulting from harvest
requires a more precise framework for describing the canopy. Potentially appropriate
variables may include leaf area index, canopy cover, volume, basal area, and biomass.
A variety of studies have shown these variables to be appropriate for characterization
with remotely sensed data under certain conditions (Franklin, 2001; Hall et al., 1998;
Luetal., 2004; Mallinis et al., 2004; Steininger, 2000). Healey et al. (2006) estimated
the changes in basal area and canopy cover over a range of harvest intensities using
Landsat imagery, sample plots, and historical aerial photos. In addition to increasing
the precision with which harvests can be labeled, modeling changes in specific
biophysical variables expresses harvest in terms that may be of direct use in updating
stand inventory information.

Another way to describe harvest is by silvicultural practice. As mentioned,
limitations in the horizontal and vertical spatial resolution of many types of remotely
sensed data realistically preclude direct monitoring of many of the silvicultural
distinctions between harvest types. However, Franklin et al. (2000) and Sader et al.
(2003) used harvest records to enable distinction between clearcuts and partial cuts.
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In both studies, “clearcut” classes met the silvicultural definition of a clearcut, while
all other harvests, including practices such as geometric harvesting and selective
thinning, were grouped into the “partial cut” class. The advantage of considering
harvests in silvicultural terms, particularly if individual partial cut practices can be
identified, is that different practices may reflect different managerial priorities and
create a richer context from which to project future developments.

As partial harvests become more common because of efforts to reduce fuel loads
(Brown et al., 2004) and as a result of changing forest practice laws (Sader et al.,
2003), the need for more nuanced harvest information will increase. Different metrics
of forest removal have the ability to emphasize different structural or silvicultural
elements of harvest. Therefore, the decision of how to label and differentiate harvest
types should be based on monitoring needs and should be integrated into the design
of the overall change detection approach.

CASE STUDY IN HARVEST DETECTION:
STAND-REPLACING HARVESTS IN THE PACIFIC
NORTHWEST (UNITED STATES)

BACKGROUND AND METHODS

The Northwest Forest Plan (the plan) was a 1994 amendment to the management
plans of federal forestlands within the range of the spotted owl (Strix occidentalis
caurina) in California, Oregon, and Washington. The aim of this plan was to balance
the maintenance and restoration of older forest ecosystems with a predictable and
sustainable level of harvest. Effectiveness monitoring was an important component
of the plan, and separate monitoring programs were established to assess, among
other plan outcomes, trends in old-growth forest ecosystems, habitat of spotted owls
and marbled murrelets (Brachyramphus marmoratus), and the socioeconomic status
of people in timber-dependent towns. Although a system of remeasured inventory
plots has provided regionwide estimates of the net loss or gain of different forest
types in the region, a spatially explicit record of significant disturbances was needed
to assess changes to older forests and to owl habitat (Lint, 2005; Moeur et al., 2005).
Furthermore, historical context was desired regarding harvest rates both before and
after the plan was enacted.

The monitoring strategy designed to meet these needs included the mapping of
stand-replacing harvests and fires in Oregon and Washington from 1972 to 2002 in
approximately four-year intervals using composite analysis with Landsat MSS, TM,
and Enhanced Thematic Mapper Plus (ETM +) data. Change detection in California
was approached differently (Levien et al., 2002) and is not discussed here. Methods
used in Oregon and Washington were chosen in consideration of project needs.
Landsat imagery was used as it satisfied the need for historical data and because its
moderate spatial resolution struck a balance between a large study area (14.5 million
Ha; see Figure 3.4) and the need for accurate spatial referencing of disturbances.
Also, the spectral resolution of the Landsat satellites, particularly TM and ETM+,
which provide SWIR information, has been useful in several vegetation mapping
projects in the region (Cohen and Goward, 2004). The mapping interval minimized
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FIGURE 3.4 (See color insert following page 146.) Map of stand-replacing harvests and
fires within the range of the northern spotted owl in Oregon and Washington from 1972 to 2002.

image acquisition and processing costs while offering sufficient temporal resolution
for the detection of clearings in the Pacific Northwest (Cohen et al., 1998).

The stand-replacing harvest attribute (the detection of fires is not discussed here)
met the study’s need to identify cuttings that removed all or nearly all of a stand’s
trees. It should be noted that, silvicultural definitions notwithstanding, the stand-
replacing designation used here does not apply to gradual shelterwood cuts that
leave a large percentage of resident trees. In fact, harvests leaving a large canopy
component (partial harvests) were intentionally excluded from the map. The iden-
tification and labeling of harvested pixels was accomplished through the use of
composite analysis, a process by which a multitemporal “stack” of image data is
classified to identify relevant changes. Accurate cross-date spatial coregistration is
essential in this process (Coppin and Bauer, 1996), and an automated tie-point
program (Kennedy and Cohen, 2003) was used to carefully coregister imagery. Other
data preparation, detailed by Healey et al. (in review) included masking out nonforest
areas using a land cover layer prepared for the plan area (Weyermann and Fassnacht,
2000) and subsetting Landsat images along general ecosystem boundaries to reduce
ecological variation in the spectral signal. Composite analysis was chosen because
it was judged to be an accurate and efficient means of isolating pixels displaying
multitemporal spectral signatures consistent with stand-replacing harvest (Cohen
and Fiorella, 1998). Supervised classification, by which spectral properties of dis-
turbed and undisturbed pixels are identified in advance, was chosen for this analysis.
An informal study (Figure 3.5) indicated that such a process, when used with a
maximum likelihood classifier, is more efficient at isolating clearcut pixels than
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FIGURE 3.5 Pilot study of efficiency of composite analysis using unsupervised and super-
vised classification to detect stand-replacing harvests. Both approaches were applied in a
500,000-Ha study area in central Washington to create maps identifying stand-replacing
harvests over two 4-year intervals using tasseled cap-transformed Landsat TM data. Resulting
maps were evaluated against the Landsat imagery, allowing iterative adjustment of classifi-
cation parameters (indicated by individual points). Kappa accuracy of successive maps was
measured against hand-digitized disturbance maps and plotted over processing time. Reported
times do not reflect preprocessing procedures that were common to both approaches.

unsupervised classification. Unsupervised classification relies on analyst interpreta-
tion of feature space clusters and can be time consuming when clusters are not well
aligned with the boundaries of desired classes.

Prior to composite analysis, the tasseled cap transformation was performed on
the Landsat data for data reduction and feature emphasis (see Data Considerations
section). A further transformation, called the disturbance index (DI), was performed
on the tasseled cap indices to produce a single band per image/date. This index
quantifies the degree to which a pixel fits a profile that is presumed to match the
position of clearcuts in tasseled cap space. Specifically, pixels with high tasseled
cap brightness and low tasseled cap greenness and wetness values have high DI
values. Details of the transformation can be found in the work of Healey et al. (2005).
Pixels that move suddenly from low to high DI values are identified by the classifier
as having been disturbed. Composite analysis in different regions has shown DI-
transformed imagery to produce results comparable to tasseled cap-transformed data
(Healey et al., 2005). Further, reduction to a single band allows visualization of
multitemporal imagery in a single computer monitor. Figure 3.6 shows a three-date
display of DI imagery that can be interpreted using additive color logic to identify
the timing of each harvest. This ready identification of the date of each clearing
facilitated the selection of training polygons for supervised composite analysis.
Postprocessing of the Oregon and Washington disturbance map included the mosa-
icking of all of the mapped segments together and the removal of all mapped cuts
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FIGURE 3.6 (See color insert following page 146.) Three dates of DI as viewed in a typical
red-green-blue (RGB) monitor. The first date (1988) is plotted in the red color gun, the second
(1992) in the green, and the third (1996) in the blue. Using the assumption that DI is high in
disturbed areas, additive color logic can be used to interpret this multitemporal image. Cyan-
colored areas are high in both the second and third dates, suggesting a disturbance between
the first and second dates. Blue pixels have a high DI only in the third date, indicating the
occurrence of a disturbance between the second and third dates. Reddish colors indicate stands
disturbed prior to the first date that are becoming revegetated by the second and third dates.

and “islands” of retained trees that were less than 2 Ha in size. The latter measure
was intended to remove small areas of error introduced by spatial misregistration.

REsuLTS AND ANALYSES

The map that was created through this process (Figure 3.4) displayed stand-replacing
harvests larger than 2 Ha and identified the time period in which they occurred. Map
error was assessed at approximately 2500 randomly selected points through a sam-
pling strategy described by Cohen et al. (2002). Error rates (88.9% overall accuracy
with a kappa coefficient of 0.83), reported by Healey et al. (2006), were acceptable
for the analyses described in the next paragraph. In general, the earlier dates, which
were mapped with lower spatial resolution Landsat MSS data, were less accurate
than TM-mapped dates. On the pixel level, most errors resulted from either spatial
misregistration or confusion of partial harvests with stand-replacing harvests.
Three types of analyses were performed with the map in support of the plan’s
vegetation monitoring program. First, the map was considered in conjunction with
a variety of geographical information system layers to identify harvest trends over
ecological provinces, ownership categories, and federal land use designations. Figure
3.7 shows harvest trends by ownership. Notable in the graph is the dramatic reduction
in harvest on federal Forest Service and Bureau of Land Management lands during
the time that has coincided with the Northwest Forest Plan (Moeur et al., 2005).
The second type of analysis focused on the average size of harvest units for each
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FIGURE 3.7 Annual area of stand-replacing harvest by major forestland owners in the
Oregon portion of the Northwest Forest Plan area.

ownership over time; in general, stand-replacing harvests on private land were larger
than those on public land over all time periods (Healey et al., in review). Finally,
the map was combined with circa 1996 maps of older forests and owl and murrelet
habitat to identify recent changes in those resources. Summaries of these analyses
can be found in the work of Moeur et al. (2005) and Lint (2005).

CONCLUSIONS

Forest harvests can be measured in several ways. A large number of projects have
focused on mapping clearcut-like operations that remove a majority of trees. Harvests
can also be mapped according to silvicultural labels or as changes in specific
biophysical variables. Each of these metrics can be mapped with a range of speci-
ficity, demanding more or less spatial, temporal, and spectral resolution of the
supporting remotely sensed data set. Independent of the choice of detection algo-
rithm, familiarity with expected harvest practices can facilitate interpretation of
remotely sensed data for harvest mapping.
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INTRODUCTION

There is an increasing need by government agencies and industry to map and monitor
the area, severity, and spatial location of insect defoliation consistently to report and
assess its impact on forest health and productivity. Information about pest activity
is used to prescribe appropriate pest management practices and to measure the
sustainability of forest ecosystems from timber supply and nontimber value perspec-
tives (P. J. Hall and Moody, 1994; R. J. Hall et al., 2003; MacLean, 1990; Simpson
and Coy, 1999). Damage from insect defoliation will (a) have an impact on trees
and stands by causing timber volume changes due to mortality and growth loss; (b)
influence host—pest interactions, including predisposition to secondary host infec-
tion; and (c) cause direct changes to stand dynamics (Alfaro, 1988; Coulson and
Witter, 1984; Ives and Wong, 1988; Kulman, 1976). Aerial sketch mapping has been
the most frequently used technique to map insect defoliation of North American
forests (Ciesla, 2000; Harris and Dawson, 1979; Simpson and Coy, 1999). While
the value of long-standing records is without question, there are limitations regarding
the extent that aerial surveys can be used to relate defoliated area (the mapped
quantity) to impact (the quantity of growth and wood volume loss) (MacLean, 1990).
The questions of when, where, and how much damage remain fundamental to forest
health concerns. Of interest is determining the role that remote sensing may play in
providing answers to some of these questions.

Insect defoliation affects the morphological and physiological characteristics
of trees, and it is these characteristics that govern how trees absorb and reflect light
(Murtha, 1982). The remote sensing approach has been to relate differences in
spectral response to chlorosis (yellowing), foliage reddening, or foliage reduction
over time, assuming that these differences can be interpreted, classified, or corre-
lated to damage caused by insect activity (Franklin, 2001; R. J. Hall et al., 1983).
Remote sensing data has long been explored for detecting and mapping insect
defoliation; variable success has been reported (Dottavio and Williams, 1983;
Franklin, 2001; Franklin and Raske, 1994; R. J. Hall et al., 2003; Heikkild et al.,
2002; Leckie and Ostaff, 1988; Radeloff et al., 1999; Riley, 1989; Royle and
Lathrop, 1997). The range of remote sensing applications has included detecting
and mapping defoliation, characterizing patterns of disturbance, modeling and
predicting outbreak patterns, and providing data to pest management decision
support systems. The possibility of forecasting the susceptibility and vulnerability
of forested areas to insect defoliation has also been reported as a tool to provide
mitigation options to forest managers (Luther et al., 1997). These applications were
intended to produce information products that support pest management planning,
impact studies, and regional or national reporting. A difficult challenge has been
the use of visual or optical estimates of defoliation severity to define a spectral
basis for damage class limits that can be mapped from the remote sensing image.
This is an important problem requiring resolution if consistent detection and map-
ping is to be achieved (R. J. Hall et al., 2003). As a result, despite past research
and apparent high potential for use of remote sensing to map insect defoliation, it
remains a technology that has seen relatively little operational use (D. J. Peterson
et al., 1999).
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Successful use of remote sensing for entomological studies requires integrating
knowledge about the insect pest, forest host, and remotely sensed image. Reliance
on the remotely sensed image alone is insufficient because what is observed is the
manifestation of damage rather than the causal agent itself. Knowledge of insect
pest biology and its manifestation of damage can be related to species host phe-
nology, stand composition, and structure to understand its damage impact. In turn,
this knowledge is fundamental for remote sensing with respect to defining spectral
regions appropriate for damage assessment, determining sensor spatial resolution
requirements, identifying the optimum timing for data acquisition, and selecting or
developing image-processing methods for mapping pest damage. What are the
major defoliators in North America from which this integrative framework could
be employed?

Based on a review of forest health reports in Canada and the continental United
States, six insect pests are considered among the major defoliators of deciduous
and coniferous forests of North America. These insect pests include aspen defoli-
ators such as the forest tent caterpillar (Malacosoma disstria Hubner) and large
aspen tortrix (Choristoneura conflictana WIK.); gypsy moth (Lymantria dispar L.);
spruce budworm (Choristoneura fumiferana [Clem.] in the east and Choristoneura
occidentalis Freeman in the west); eastern hemlock looper (Lambdina fiscellaria
fiscellaria [Guen.]); and jack pine budworm (Choristoneura pinus pinus Freeman)
(Hall et al., 1998; Simpson and Coy, 1999; U. S. Department of Agriculture
[USDA], 2004). Many of these pests can cause periodic outbreaks over large areas
that can culminate in extensive replacement of forest stands (Volney and Fleming,
2000). This chapter has been written within the context of these major North
American defoliators.

The purposes of this chapter are to:

1. Compare the general biological characteristics of six insect defoliators,
their damage patterns, and the timing of defoliation damage

2. Summarize defoliation mapping methods, including aerial sketch map
surveys, and which remotely sensed data and methods have been applied
to these six insect defoliators

3. Present a case study for mapping and monitoring aspen defoliation over
a multitemporal sequence of four image dates

MAJOR INSECT DEFOLIATORS IN NORTH AMERICA

The following sections include, for select major insect defoliators in North America,
brief biological descriptions in relation to defoliation damage, timing, and remotely
sensed image acquisition considerations.

ASPEN DEFOLIATORS: FOREST TENT CATERPILLAR AND LARGE ASPEN TORTRIX

The forest tent caterpillar and large aspen tortrix are the most serious insect defoli-
ators of trembling aspen in North America (Figure 4.1a). These defoliators have
affected large areas of forests in Canada and the continental United States, with a
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notable peak in 2001 that approached 25 million Ha (Figure 4.1a; USDA, 2004).
Damage is caused during larval feeding, which begins when the leaves emerge in
the spring and lasts until the end of June or early July depending on the defoliator
(Table 4.1). Trembling aspen tends to refoliate during late July depending on the
duration and severity of defoliation. The ideal time for observing the actual severity
of defoliation is when the largest amount of foliage has been consumed. This would
be near the culmination of larval feeding, which occurs approximately from mid-
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June to early July. This confines the time period when remote sensing imagery should
be acquired. If the severity of defoliation is known to be severe based on field surveys
or prior aerial survey knowledge, then it may be possible to obtain after-defoliation
imagery earlier in June during the larval feeding period under the assumption that
both before- and after-defoliation imagery would be acquired since the intensity of
defoliation would be sufficiently persistent and dramatic to permit a wider time
window to be used (R. J. Hall et al., 1983). While there was some reported success
at interpreting and classifying the presence or absence of severe aspen defoliation
from multidate Landsat images (R. J. Hall et al., 1983, 1984), more recent work has
resulted in greater sensitivity to defoliation severity levels through detection of
differences in leaf area index (LAI) between pre- and postoutbreak images (R. J.
Hall et al., 2003).

Gyprsy MOTH

In 1869, gypsy moth was introduced into the Boston area from France for experi-
mental crossbreeding with silkworms (Leatherman et al., 1995). Some escaped, and
without natural enemies, they have become the most important defoliator of trees
in the eastern United States (Herms and Shetlar, 2002). The gypsy moth was observed
in eastern Canada in 1981 as a primary defoliator of red oak, although it has also
defoliated white birch, red maple, and eastern white pine (Hall et al., 1998). During
1999 to 2001, it was a more significant defoliator in the United States compared to
Canada, but its area of damage was more similar in 2003 (Figure 4.1b). Gypsy moth
larvae emerge in late April to early May and begin feeding immediately, although
the major defoliation damage occurs from older, larger larvae during early to mid-
June (Table 4.1). Because this pest has such a wide host base that includes deciduous
and coniferous species, its detection and mapping by remote sensing can be chal-
lenging. As a result, a multitude of remote sensing techniques, including band ratios,
supervised and unsupervised classifications, image differencing, and change vector
analysis, to name a few, has been employed in gypsy moth studies (Hurley et al.,
2004; Joria et al., 1991; Muchoney and Haack, 1994; Townsend et al., 2004). While
refoliation in deciduous stands is often considered a bounding condition on image
selection windows, Hurley et al. (2004) used three dates of image ratios representing
before-defoliation, after-defoliation, and refoliation time periods to increase circum-
stantial evidence in the detection of gypsy moth defoliation events.

SprUCE BubworM

The eastern and western spruce budworms differ little in biology and are among the
most destructive defoliators in North America (MacLean, 1990; Volney, 1985). The
total area of defoliation in Canada and the United States has been relatively similar,
within the range of 2 to 4 million Ha per year (Figure 4.1c). Duration of outbreaks
appears to vary, but its damage pattern frequently includes current-year and older
foliage and results in growth loss, top Kill, and vast areas of mortality, especially if
severe defoliation is repeated over several years (MacLean, 1990; Ostaff and
MacLean, 1989). Larval feeding begins with emergence of the overwintering second
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instar larvae in the spring until feeding culmination in June (Table 4.1). Spruce
budworm can defoliate several host tree species depending on its location and is
compounded by current and cumulative defoliation conditions, which complicates
detection by remote sensing. During the latter stages of larval feeding, the needles
turn reddish brown, which is an indicator of current defoliation, but the detection
window is narrow relative to other insect pests, which restricts the time period when
remotely sensed imagery could be acquired. Research has instead focused on the
reflectance characteristics of cumulative defoliation (Leckie et al., 1988). As a result,
there has been greater relative success at detection of cumulative damage even
without the use of multidate imagery (Franklin and Raske, 1994).

Hemrock LooPer

The distribution of eastern hemlock looper extends from Alberta to Newfoundland
in Canada and then south to Georgia in the eastern United States (MacLean and
Ebert, 1999). While periodic large outbreaks have occurred in North America, the
trend from 1999 to 2003 suggests it is a more significant pest in Canada (Figure
4.1d). The principal host is balsam fir, but other tree species become susceptible in
high populations as the looper is an aggressive feeder that will consume foliage of
all age classes (MacLean and Ebert, 1999; Raske et al., 1995). Emerging larvae in
the spring feed on new needles, while later instars will feed on both new and old
foliage; feeding is generally completed by late July (Table 4.1). Because the looper
is a wasteful feeder, the residual foliage tends to get caught with the silken threads,
and the desiccation of the damaged needles gives the trees their characteristic red-
brown color. It is at this stage of damage that remote sensing studies tend to be
focused (Franklin, 1989). Significant correlations have been reported between per-
centage defoliation and spectral reflectance values, particularly in the near- (r = —
0.78, p =.0001) and middle-infrared (r = —0.63, p =.0001) portions of the spectrum,
suggesting that discrimination among light, moderate, and severe classes of defoli-
ation was possible from single-date Landsat Thematic Mapper (TM) data (Luther
et al., 1991). Outbreaks of this pest can affect large areas, such as the 1998-2000
event that defoliated over 400,000 Ha and was detected and mapped from 1-km
coarse spatial resolution multitemporal SPOT (Systéeme pour I’Observation de la
Terre) Vegetation data (Fraser and Latifovic, 2005).

Jack PINE BUDWORM

The jack pine budworm is considered the most important defoliator of jack pine in
Canada and the lake states of the United States (Cadogan, 1995). Previous reports
suggested outbreak patterns occur every 6 to 10 years (Volney and McCullough,
1994), when large areas can be damaged, and 1999-2003 trends suggest defoliation
is currently at endemic levels (Figure 4.1e). Jack pine budworm overwinters as a
second instar larva and emerges in late May soon after male cones open and new,
young needles emerge (Table 4.1). The budworm larvae migrate to the tops and outer
crown of trees due to their preference for male flower clusters and young foliage
(Howse, 1984). Defoliation spreads from the top of the tree downward (Moody,
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1986). Only the basal portion of the needle is eaten, while the rest becomes entangled
in a mass of silk and larval excrement, which changes to a reddish color that becomes
an indicator of defoliation severity (Volney, 1988). The red discoloration is likely
the stage at which the greatest spectral change occurs, and as such, the timing for
the mapping of defoliation is critical because peak coloration occurs during a short
period from late June to early July (Howse, 1984). Wind and rain remove the red
needles, resulting in exposed branches and top kill if severe defoliation was sustained.
While the degree of top kill sustained in a stand is an indicator of defoliation severity
(Hall et al., 1998), attempts to detect top kill on multidate satellite imagery proved
difficult (R. J. Hall et al., 1995). The short time period during which the red discol-
oration is visible on trees remains the most appropriate time period for remote sensing
observation (Leckie et al., 2005; Radeloff et al., 1999), but this does result in a very
narrow window for acquiring cloud-free satellite images.

DiscussioN: LINKING BioLoGy witH TECHNOLOGY

From the reviews of the biology and manifestation of damage caused by these forest
pests (Table 4.1) and examples of remote sensing studies that have been undertaken,
two issues appear fundamental to the successful use of remote sensing to map insect
defoliation: the spectral and spatial characterization of defoliation and the timing of
image acquisition. First, a remote sensing spectral basis for damage class limits (e.g.,
light, moderate, and severe) is required to achieve consistent detection and mapping
of defoliation severity. Field and aerial surveys tend to rate areas defoliated into
categories that remote sensing studies have attempted to emulate. Broad damage
class limits are not conducive for consistent defoliation mapping because they may
not correspond to differences in spectral response values that are spectrally or
statistically separable on the image. The two factors that drive the spectral response
of a sensor include its radiometric resolution and the range of sensitivity to the
electromagnetic spectrum. Thus, remote sensing observations from airborne or sat-
ellite sensors are over a more continuous scale of spectral responses that can poten-
tially capture a finer scale of defoliation levels than the broad classes that are typically
used (Franklin, 2001; R. J. Hall et al., 2003).

Defoliation tends to result in either physical loss of leaf area or leaf color change,
which results in physical differences in spectral response when compared to prede-
foliation images. Several consecutive years of defoliation, however, tend to result
in physiological weakening, top kill, and mortality for some defoliators. Understand-
ing the role these factors may play in the resulting spectral responses recorded in
the image is important to successful use of remote sensing for mapping defoliation.
In addition to the spectral observations of defoliation, the size of the outbreak area
must also be large enough to be detectable with the airborne or satellite sensor
employed. The spatial resolution of the sensor and the areal coverage of an image
are also important considerations in the selection of the appropriate sensor. As a
result, with both sensor spectral and spatial resolution considerations, the remote
sensing of a defoliation problem is more complex than a simple change in foliage
condition. Second, the timing of image data acquisition should coincide with the
period when spectral changes resulting from defoliation are most observable; for
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many defoliators, this time period is often relatively short. Hardwoods, for example,
tend to respond to defoliation by a second leaf flush in late spring or early summer
(Radeloff et al., 1999). Red needles on conifers tend to be washed and blown away
by rain and wind, leaving a predominantly green tree with only a reduction in needle
leaf area that may or may not be detectable by remote sensing.

Timing of data acquisition is notably one of the most difficult to achieve with
satellite remote sensing because of the need for cloud-free conditions during the
suitable range of dates for image acquisition. Most remote sensing studies tend to
rely on pre- and postoutbreak images to detect spectral response differences resulting
from insect defoliation. In the case of the gypsy moth, an additional image taken
during the refoliation period was used to increase evidence of the forest pest (Hurley
et al., 2004). In general, the greater the number of images required, the greater the
likelihood that remote sensing, particularly from satellite platforms, will fail due to
the decreasing likelihood of finding cloud-free images. There are, however, 29
remote sensing satellites in orbit and 34 planned, of which 70% will offer a spatial
resolution of 2 to 36 m with a range of spectral configurations (Stoney, 2004). As
the number of these remote sensing satellite sensors increases, the likelihood of
obtaining a cloud-free image during the narrow time periods when spectral changes
are at its maximum will increase. The opportunities to acquire imagery ranging from
high (e.g., submeter pixel size) to low spatial resolution (e.g., 1-km pixel size) are
obviously increasing at an unprecedented rate that should help ensure that future
image data will be available during the narrow time periods necessary to capture
damage from pest defoliation.

This section has outlined the biology of these forest pests, their manifestation
of damage, and how it influences the timing of remote sensing image acquisition.
Logical questions that follow include: What has been the primary method used in
defoliation surveys? Which remote sensing methods have been employed in mapping
defoliation?

ASSESSMENT OF INSECT DEFOLIATION
AERIAL SURVEY TO Assess INSECT DEFOLIATION

Aerial sketch mapping is the process of a trained observer delineating damaged
areas viewed from an aircraft onto a map. It is the most frequently used method to
collect information on the location, intensity, and area affected by forest pests
(Ciesla, 2000). These data are used in support of pest management and provincial
and national reporting on the status of forest pests (e.g., Alberta Sustainable
Resource Development, 2003; Hall et al., 1998; Simpson and Coy, 1999; USDA,
2004). Such surveys are quick and timely as they are undertaken when pest damage
is most observable and are considered cost-effective because of the large areas that
can be observed rapidly (Ciesla, 2000). Notably, the accuracy of such surveys has
been questioned due to the subjectivity of observer ratings, the ability to detect
defoliated areas, and the determination of the exact locations of observed defoliation
on the map (Ciesla, 2000; MacLean and MacKinnon, 1996). Variable weather
conditions affect visibility and aircraft stability, which can influence sketch map
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accuracy (MacLean and MacKinnon, 1996). Further, the damage label assigned to
a delineated polygon is typically only an expression of the predominant level of
damage since other levels of damage severity may occur within a polygon that has
been mapped as moderate or severe. Aerial sketch map surveys are also impaired
by the lack of time to record details, and the maps produced are not spatially precise
because inclusions of large nondamaged areas and nonsusceptible land cover types
result in overestimates of the actual area damaged (Harris and Dawson, 1979). In
Canada, most forest health surveys conducted by provincial agencies tend to be
focused on managed lands, and thus areas outside jurisdictional interest are not
generally mapped for pest activity. Despite these compromising issues, aerial sketch
map surveys remain in prevalent use.

Perhaps the motivators for the continual use of aerial sketch map surveys is
that the method guarantees data acquisition, it maintains the continuity of long-
term records on a national scale, and efforts are under way to improve the consis-
tency and quality of conditions under which these surveys are undertaken. In
particular, training and education (British Columbia Ministry of Forests, 2005),
survey standards (USDA, 1999), and technological innovations such as digital
capture systems based on global positioning system technology combined with
geographic information systems and portable computers (Ciesla, 2000; USDA,
2003) are in use to improve the quality and consistency of these products. In
particular, moving toward digital capture of sketch map surveys greatly improves
the efficiency of map production and helps to reduce transfer errors because the
delineated line work can be accomplished immediately instead of requiring manual
digitization processes after the aerial survey flights are completed. Given these
method refinements and how these survey results have been used in reporting, there
is the likelihood that these surveys will continue in the near future. Aerial surveys
provide information on the causal agent of forest damage and their approximate
location. While inventory data are sometimes used to obtain more realistic areas
of defoliation, this practice is not common. Remote sensing can complement this
information by generating more spatially precise and detailed defoliation maps
from which its impact on the forest resource could be determined. A review of the
remote sensing methods that have been used for insect defoliation illustrates the
degree that they have been successful in obtaining information of operational
relevance (i.e., used by those in forest management).

REMOTE SENSING TO AsSEss INSECT DEFOLIATION

Selected remote sensing studies were compiled to identify trends in sensor, image
data, image preprocessing, analysis method, and type of insect defoliation data that
were used to assess the six insect defoliators covered in this chapter (Table 4.2).
Studies ranged from 1984 to 2004, of which Landsat TM, Enhanced Thematic
Mapper Plus (ETM+), and SPOT data were most frequently employed in insect
defoliation studies. More than half of the studies employed two or more dates of
image data, representing before- and after-defoliation time periods. Timing of image
acquisition coincident with the period when the manifestation of damage is most
visually obvious remains the most important criterion for image selection. Some
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studies of insect pests, such as spruce budworm and hemlock looper, that result in
foliage color change were reported with single-date images. In terms of atmospheric
preprocessing, only half of the studies employed atmospheric correction or image
normalization procedures, but most of the more recent studies after 1998 employed
such procedures. This observation may be reflective of the developing science by
which change detection studies now recommend image preprocessing procedures
such as radiometric and atmospheric correction, geometric rectification, and topo-
graphic normalization processes be performed prior to analysis (Lu et al., 2004).

Remote sensing methods employed in defoliation studies range from classifica-
tion to modeling, and there appears to be no consistent approach for mapping (Table
4.2). Given the range of damage patterns, from physical loss of foliage to a change
in foliage color, this finding was not unexpected. Image band ratios, transformations
such as principle components and tasseled cap, image differencing, and various
image classification approaches comprise the most frequently used approaches for
mapping defoliation. Particularly promising results were reported from spectral
mixture analysis, discriminant analysis, multiple logistic regression, and modeling
changes in leaf area (Table 4.2). The type of information needed, however, is a driver
for selection of method. Clearly, there are opportunities for developing more stan-
dardized procedures. To select the appropriate scale and image-processing method,
the user requires a clear understanding of the problem and the information needed
in relation to the biology and damage caused by the forest pest. Refer to Chapter 2,
this volume, on scale and image-processing methods for additional details on image
processing and spatial data modeling for capturing disturbances.

Only 3 of the 14 studies reviewed employed continuous estimates of insect
defoliation damage (Table 4.2). Aerial sketch map surveys or ground ocular assess-
ments are typically subjective, which results in relatively broad classes of defoliation
damage that are frequently used in remote sensing studies. Defining the spectral
basis for these broad damage limits will remain a problem until more continuous
estimates of defoliation damage become available. To illustrate many of the funda-
mental concepts and trends summarized in this chapter, the following case study
shows the integration of biological knowledge with remote sensing methods to map
and monitor aspen defoliation.

CASE STUDY: REMOTE SENSING OF
ASPEN DEFOLIATION

INTRODUCTION

Trembling aspen is the most widely distributed North American tree species (Perala,
1990) and, from ecological and commercial perspectives, the most important decid-
uous tree species in the North American boreal forest (Hogg et al., 2002; E. B.
Peterson and Peterson, 1992). Its geographic distribution extends from Atlantic
Canada to the Pacific coast of Alaska and as far south as Mexico (E. B. Peterson
and Peterson, 1992). Repeated defoliation by insects, in combination with drought,
severe early spring freeze-thaw events, and fungal pathogens has caused reduced
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growth and dieback of aspen in different parts of North America (Brandt et al., 2003;
Hogg et al., 2002).

In northern Alberta, Canada, an outbreak of large aspen tortrix defoliation was
recorded by aerial sketch map surveys during the late 1990s and early 2000s,
followed by collapse in 2004. This case study demonstrates how a four-year (2001
— 2004) time series of Landsat TM images can be used to map trembling aspen
defoliation patterns by monitoring changes in LAI at the approximate same time of
year through comparison with the preoutbreak year (1999). LAI is considered a
fundamental biophysical measure of the forest canopy due to its governing role in
many ecophysiological processes, such as canopy light interception, evapotranspi-
ration, and photosynthesis (Running et al., 1989). In turn, defoliation and dieback
influence the tree’s vegetative biomass, which can be monitored by satellite mapping
of changes in leaf area.

MEeTtHODS: How Is ANNUAL MONITORING OF DEFOLIATION
PATTERNS ACHIEVED?

Study Area

The study area was located near the town of High Level in north central Alberta
situated at 58.5°N, 116.2°W. The species occurring in the study area depended on
moisture and site conditions and were characterized by pure and mixed stands of
trembling aspen, balsam poplar, and white spruce. The study area was selected in
part because of reported outbreaks of large aspen tortrix, which had been severely
defoliating many trembling aspen stands (R. J. Hall et al., 2003). The area was also
part of a long-term research project called CIPHA (Climate Change Impacts on
Productivity and Health of Aspen) that was initiated in 2000 to monitor changes in
aspen health as a result of changes in climate in combination with insect defoliation
(Hogg et al., 2005).

Aerial and Field Data Collection

Aerial sketch maps are produced annually by an experienced provincial forest health
surveyor, who delineates polygons onto a 1:250,000 topographic map while flying
in a fixed-wing Cessna 210 aircraft at an elevation range of 900 to 1200 m above
sea level at a speed of 270 to 300 km/hr (Maximchuk, 2005). These maps were
obtained from the province for the 1999, 2001, 2002, 2003, and 2004 survey years.
Each manually sketched polygon was assigned a defoliation severity rating of nil-
light (<35%), moderate (35-70%), or severe (>70%) as defined in the Alberta Land
and Forest Service Aerial Survey Manual (Alberta Sustainable Resource Develop-
ment, 2002). Larger areas of defoliation may include a combination of light, mod-
erate, and severe defoliation but are labeled by the most frequently occurring or
dominant severity rating for that area. Since aerial sketch maps generally provide
an overview of defoliation extent and severity, they were useful in identifying where
to locate field plots and to provide a general level of validation over the landscape.
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Field plots were located within the strata defined by the aerial sketch map survey
(Figure 4.2, Method 1a). Estimates of defoliation were based on mean defoliation
ratings of 10 to 20 randomly selected trees per plot during the peak defoliation
period of 22-25 June 2001. Defoliation of individual trees was visually estimated
with the aid of binoculars to 10% classes (Michaelian et al., 2001) (Figure 4.2,
Method 1b). Ten optical LAI-2000 measurements were taken in each selected plot
(Figure 4.2, Method 2) and averaged for validating the estimation of LAI on the
2001 image. Given that it was not feasible to measure LAI in the field for each year
of the time series, an indicator of how well LAI could be estimated on the image
was derived through validating results from one of the image years. The optical
LAI-2000 measurements were also validated by comparison with up to ten litter
traps that were established in each sample plot (R. J. Hall et al., 2003). The geo-
graphic location of each plot was recorded with the aid of a Trimble Pro-XR global
positioning satellite receiver, which had data subsequently differentially corrected
to within 5 m of its true location with local base station data.

Satellite Remotely Sensed Data

Landsat TM and ETM+ image data (Table 4.3) were acquired to map the peak
occurrence of aspen defoliation from 2001 to 2004, and a 1999 image was used as
the predefoliation image (Figure 4.2, Method 3). The image selection criteria were
defined by (a) an image acquisition date of early June to early July to capture the
outbreak stage of defoliation prior to refoliation of trembling aspen that tends to
occur during later July (Table 4.1); (b) a nondefoliated image to associate changes
in spectral response from healthy deciduous stand conditions to defoliated stand
conditions; and (c) a relatively cloud-free overlap region between the images. Relat-
ing the period of peak defoliation at a particular stage of vegetative phenology to
the timing of image acquisition is the most important criterion when selecting
images. While no cloud-free Landsat image was available from mid- to late June
over the area of interest, there was a relatively consistent time series available in
early July that was deemed acceptable (Table 4.3).

The Landsat images were processed to retrieve top-of-atmosphere directional
reflectance (Figure 4.2, Method 3a). The Landsat data corresponded to Level 1G at
sensor radiance systematic corrected data that was processed using the PGS pro-
cessor by Radarsat International. Radiometric calibration was performed using
information provided in the image header files. An iterative dense dark vegetation
atmospheric correction approach was applied to all scenes in this study using
information extracted from selected dense dark vegetation pixels across various
spectral wavelengths to determine the contribution of aerosols influencing the pixel
radiances recorded at the satellite sensor. The 6S radiative transfer code (Vermote
et al., 1997) was used iteratively to determine an estimate of surface reflectance
given top-of-atmosphere reflectance and an estimate of aerosol optical depth. This
approach provided a systematic and repeatable method for both radiometric cali-
bration and atmospheric correction of multitemporal Landsat imagery as these
factors are essential to produce precise estimates of LAI based on the broadband
spectral vegetation indices that were used (Fernandes et al., 2003). All the images
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FIGURE 4.2 (See color insert following page 146.) Method flowchart to generate a time
series of aspen defoliation maps based on changes in LAI recorded between pre- and postde-
foliation satellite images.

were then georeferenced to the Lambert conformal conic projection using a nearest-
neighbor, first-order transformation (Figure 4.2, Method 3b).

DETERMINING LEAF AREA INDEX FOR BEFORE AND AFTER DEFOLIATION
TiME PErRIODS

To determine the change in leaf area attributable to defoliation, a model that relates
an image ratio or vegetation index to leaf area was needed for each image date so
that differences resulting from defoliation could be computed. Studies suggested
that the infrared simple ratio (ISR) (computed as Landsat ETM+ band 4/Landsat
ETM+ band 5) was a more robust indicator of LAI (Fernandes et al., 2003) than
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TABLE 4.3
Landsat TM and ETM+ Image Data for the Case

Study for Mapping Aspen Defoliation Induced by
Insect Activity

Path  Row Sensor  Year Day Aspen defoliator

46 19 ETM+ 1999  July 21 Noninfestation year
46 19 ETM+ 2001  July 10  Large aspen tortrix

47 19 ™ 2002  July 12 Large aspen tortrix
47 19 ™ 2003  July 15  Large aspen tortrix
46 19 ™ 2004  July 10  Forest tent caterpillar

the simple ratio or reduced simple ratio reported in earlier studies (Chen et al., 2002).
The ISR was computed for each of the 2001, 2002, 2003, and 2004 image dates
(Figure 4.2, Method 4). Structural regressions between Landsat reflectance measure-
ments based on the ISR and in situ optical LAl measurements were applied to each
image date (Fernandes et al., 2003) (Figure 4.2, Method 5a). Validation of LAI
estimates from the 2001 image was undertaken through comparison with field-based
optical LAI-2000 measurements (Figure 4.2, Method 2). Model results were within
a maximum absolute error of 1 LAI unit with a root-mean-square deviation of 0.37
LAI unit, a remarkable result considering it was originally developed for national
applications (R. J. Hall et al., 2003). The ISR model was subsequently applied to
each image date to produce an LAI image within the deciduous and mixed wood
land cover types for each of the 2001, 2002, 2003, and 2004 image dates (Figure
4.2, Method 5b). Classified land cover for this region from the Earth Observation
for Sustainable Development of forests program (Wulder et al., 2003) in collabora-
tion with the Alberta Ground Cover Characterization project was used to stratify the
images into deciduous and mixed wood cover types to ensure regions designated as
coniferous, shrub, agriculture, or other nonsusceptible species types would not be
modeled. The overall accuracy of land cover maps produced by the Alberta Ground
Cover Characterization project is targeted at 80%.

SATELLITE MAPPING OF ASPEN DEFOLIATION

Because changes in LAI attributable to defoliation should be relative to the amount
of LAI present before defoliation, the percentage change in LAI from 2001 to 2004
was computed relative to LAI in 1999. A model to estimate percentage defoliation
as a function of change in LAI was derived based on percentage defoliation values
measured in the field (Figure 4.2, Method 6a). This model was an exponential
function with an R? of 0.77 (R. J. Hall et al., 2003). While this model was originally
generated for descriptive purposes, additional field and image data could be used in
an operational program to define better the relationship between percentage defoli-
ation and percentage change in LAI relative to the before-defoliation year. This
percentage defoliation model was subsequently applied to the defoliation images for
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2001, 2002, 2003, and 2004. A median filter was employed on the resulting defoli-
ation raster maps to remove isolated single pixels and to preserve homogeneous
areas of pixels that more likely represent areas of aspen defoliation. A visual assess-
ment of the image models within the aerial sketch-mapped areas suggested that most
of these isolated pixels were located outside the delineated defoliated areas. The
image models were then classified into the three broad defoliation severity classes
(<35%, 35-70%, and >70%) to produce a thematic map depicting the patterns of
defoliation severity for each image year.

ResuLTs: REFINEMENT OF SKETCH MAP SURVEY AREA

The aerial sketch map surveys provide a broad indicator of the annual areal extent
of aspen defoliation. These surveys overestimate the actual area of damage because
they include areas not susceptible to aspen defoliation, such as conifer forest, agri-
cultural lands, and water bodies. Within the study area selected for this case study,
the deciduous and mixed wood land covers were approximately 232,000 Ha and
302,000 Ha, respectively, which amounted to an approximate 530,000 Ha of forested
land that was potentially susceptible to aspen defoliation. The total defoliated area
derived from aerial sketch mapping was nil in 1999, but the area increased to more
than 350,000 Ha annually between 2001 and 2003, followed by a reduction to 90,000
Ha in 2004 due to the collapse of the large aspen tortrix outbreak. Intersecting the
deciduous and mixed wood land cover with the aerial sketch maps excluded areas
not subject to defoliation. The resulting area of susceptible forest was approximately
70,000 Ha for deciduous forest and 95,000 Ha for mixed wood forest from 2001 to
2003. The susceptible area obtained in 2004 was approximately 19,000 Ha for
deciduous forest and 37,000 Ha for mixed wood forest.

Once the amount of susceptible area was determined, it was simpler to isolate
the defoliated forest within it. Translating the percentage reduction in leaf area from
the satellite images to percentage defoliation resulted in a much smaller area of
defoliation within each of the deciduous and mixed wood land cover types (Figure
4.3). Aspen defoliation in the deciduous land cover was approximately 20,000 to
30,000 Ha from 2001 to 2003 and less than 10,000 Ha in 2004 (Figure 4.3a). The
yearly pattern of defoliation was markedly different between the deciduous (Figure
4.3a) and mixed wood (Figure 4.3b) land cover types, which was attributed to
increased complexity of the mixed wood stands due to the conifer component. The
large decrease in defoliated area observed in 2004 was consistent with the reported
collapse of defoliation from the aerial sketch map surveys. While the accuracy of
the smaller areas is difficult to validate, we can at least compare the general trends
reported from the aerial sketch map survey with that derived from the remote sensing
mapping of defoliation.

There was a similar trend in the patterns of defoliation mapped from the remote
sensing time series compared to that mapped from the aerial surveys (Figure 4.4).
The similarity in these yearly trends is a strong indicator that the remote sensing
approach does provide a reasonable representation of the actual trends as represented
in the aerial sketch map data over the four-year time period. The key difference in
these results is that the aerial survey sketch maps represent the total areal extent of
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defoliation, whereas the remote sensing derivation is closer to representing the net
areal extent that appears to have sustained defoliation.

A compilation of the remote sensing defoliation maps from 2001 to 2004 for a
subsection of the study area is illustrated in Figure 4.5. The sketch maps and image
composites provide a visual comparison of the results derived from aerial survey
and remote sensing. The image enhancement distinguishes areas of aspen defoliation
by a grayish color tone, with healthy deciduous and mixed wood stands depicted
by light and dark orange tones, respectively. By comparing the defoliated areas on
the images to the defoliation sketch maps, it was obvious where the remote sensing
estimates more precisely defined the location of defoliation activities. The sketch
maps, however, do provide a useful framework for associating the remote sensing
patterns to the general areas of insect infestation. While the remote sensing changes
in leaf area did identify areas of greatest change, without ancillary information it
would be difficult to identify the cause of the change; an integration of both methods
therefore appears best. The aerial sketch map would identify the causal agent and
the general region where this activity is taking place, and remote sensing of distur-
bance caused by defoliation (Figure 4.2) would provide the mechanism for more
precise mapping of the actual areas of defoliation.

SUMMARY

One of the major natural disturbances on forest landscapes is caused by insect
defoliators. While aerial and ground surveys are the means by which these distur-
bances are typically recorded, there has been considerable interest to explore the
advantages of using remote sensing to help meet the information needs of govern-
ment and industry. These advantages include achieving more consistent and precise
mapping of pest activities for reporting and assessing impacts on sustainability of
forest ecosystems.

A conceptual model for more successful use of remote sensing was proposed
through the integration of pest, host, and remote sensing knowledge. A table of
comparative biology and damage patterns for six major defoliators summarized
information about the manifestation of damage and the timing for which these
activities occur relative to host tree phenology. This information is required to define
the spectral basis for pest damage and timing of image acquisition relative to the
causal agent. A review of remote sensing studies undertaken specifically to detect
and map defoliation from the six pests revealed that a wide range of data and methods
of analysis have been employed. A case study example with a comprehensive
methods flowchart was assembled to illustrate the model application for mapping
and monitoring of aspen defoliation over a four-year time series.

A challenge is how to move forward toward an operational defoliation mapping
program that uses remote sensing. While aerial surveys are subjective and not
spatially precise, sketch maps do provide a strong advantage in that data acquisition
is guaranteed. An approach to improve on these surveys is to develop an integrated
program since the use of remote sensing alone for detection is more difficult than
its use for mapping. Due to the large regions over which insect pests may occur, the
selection of remotely sensed imagery is best undertaken within the framework of
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FIGURE 4.5 (See color insert following page 146.) A subset of the study area illustrating
the pattern of insect activity from 2001 to 2004. The aspen defoliation mapped by remote
sensing provides a more realistic estimate of the severity and extent of forest damage than
the aerial survey sketch maps. Image composites consist of Landsat band 4 as red, band 5 as
blue, and band 3 as green using an adaptive stretch enhancement.
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aerial surveys. These surveys provide information on the likely causal agent and the
general location of pest defoliators to focus the image selection and acquisition
activities. Subsequent analysis of remotely sensed images provides more precise
mapping of the location and severity of the insect defoliation event.
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INTRODUCTION

Each year, wildfires burn millions of hectares all over the world, with estimates
suggesting that fires annually burn an area half the size of China (The Nature
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Conservancy, 2004). Although widely characterized as detrimental to the environ-
ment, fire can be a critical ecosystem component. For example, frequent low-
intensity fires consumed much of the understory and downed woody debris, allowing
old-growth forests to flourish. Ecologists theorize that some species adapted to fire,
using it as a mechanism for seeding and further distribution. In Australia, one
example is the eucalyptus tree, easily the most dominant species on that continent.
The eucalyptus trees “amalgamated hundreds of species which were ideally predis-
posed to survive in an environment of increasing fire” (Pyne, 1991, p. 27). In some
cases, this adaptation to fire was essential, especially in Australia, where fire is
commonplace. “Fire had touched other continents, but it branded Australia” (Pyne,
1991, p. 66).

Early settlers in Australia used fire as a hunting tool, hunting along the fire front
as frightened animals were flushed out of their habitats. European explorers reported
that the Aborigine peoples in Australia used fire so often they would walk around
with “fire sticks” (Pyne, 1991, p. 85) to create fire whenever they needed, whether
for meals, hunting, or warmth. These human-caused fires facilitated a fire-adapted
environment dependent on frequent low-intensity fires that maintained healthy veg-
etation conditions. When European settlers came to Australia and displaced Aborig-
ines and their frequent fires, they reported rapid modification of vegetation structure
and composition. Instead of grasses they had originally likened to English parks,
they cited a thickening of scrub, enough eventually to close off open forests. The
management practice of excluding fire from ecosystems where possible created
significant fuel loads throughout Australia, therefore increasing the risk of cata-
strophic fire. “By the 1890s the consequences of removing Aboriginal fire became
inescapable. By the 1980s, they required restitution” (Pyne, 1991, p. 133). Prescribed
fire is now a frequently used practice in Australia.

Several other examples throughout the world have been noted regarding the
effects of the removal of fire from fire-adapted ecosystems. In North America, the
landscape was accustomed to frequent fire, nearly all naturally caused. Repeated
fires created open forests and cleared much of the dense understory. With the arrival
of Anglo-European settlers, natural fires became a hindrance. Fire suppression in
the United States began in the early 1900s after large wildfires destroyed millions
of hectares of forest, burned many homes, and killed many people. Like Australia,
by the 1980s the consequences of removing natural fire from the landscape created
dangerous fuel buildup. Prescribed fires and other forest-thinning projects in the
United States are now frequently used to control the fuel buildup created from
suppression for so many years.

In the Mediterranean also, historically fire was not trusted. People made every
attempt to suppress and remove fire from the ecological cycle. Fire was not socially
acceptable and was shunned as often as possible. Pyne (1997) writes that “Free-
burning fire was the prerogative of free-ranging peoples, groups who wandered
outside the fixed social order or who, by their mobility, threatened to destabilize
that order and the landscape on which it depended” (p. 91). The social perception
of fire during the late 1970s was such that, “In most Mediterranean countries, anyone
considering the possibility that fire could be beneficial was in danger of being
regarded as a pyromaniac and jeopardizing his professional career” (Naveh, 1990,



Using Remote Sensing to Map and Monitor Fire Damage 115

p. 2). This aversion to fire, natural or human caused, resulted in the Mediterranean
region seeing more frequent fires and increasingly more devastation from those fires
(Stocks and Trollope, 1992). Naveh (1990) wrote that it was not until 1989, that H.
Biswell, an ecologist and forester, proved that fire could be used through prescribed
burning for effective vegetation management.

In situations throughout the world, suppression of natural fire drastically altered
the composition and structure of vegetation that relied on frequent fires. Many land
managers learned through difficult lessons that fire is an essential part of the
ecosystem. As more people relocate near or in forested land, anthropogenic causes
(e.g., arson, campfires, etc.) result in more wildfires. The juxtaposition of human
life, property, and wildlands creates a need for accurate mapping of fire activity and
its impacts.

This chapter focuses on remote sensing technologies used to create accurate
maps of burn scars and severity. Many band ratios, algorithms, and methods have
been studied to meet these ends. This chapter discusses a number of commonly used
methods, including KT (Kauth-Thomas), PCA (principal components analysis),
neural networks and object-oriented classification, NDVI (normalized difference
vegetation index), and NBR/ANBR (normalized burn ratio/differenced normalized
burn ratio). Following the discussion of methods, the rationale for using the
NBR/ANBR is made, and the results of an operational example are presented. The
institutions and processes for making various stages of pre-, during, and postfire
maps available to fire managers is also presented.

ACTIVE AND POSTFIRE MAPPING EFFORTS

The effects and degree of disturbance on ecosystems by fire can typically be assessed
during two stages of fire activity: active and postfire. A variety of tools is available
to measure fire effects. These tools are typically available at broad (national or
continental) and local (fire incident) scales. Active fire detection technology is used
by wildland fire managers as a tool to assist strategic firefighting and planning and
as a land management tool. Mapping of burn condition after a fire is often used to
quantify the impacts of the fire on a variety of environmental variables, such as soil
condition, property damage, and water quality.

AcT1ive FIRE DETECTION

Active fire detection and mapping efforts play an important role in wildland fire
suppression efforts. Fire detection technology allows managers and scientists to
monitor the intensity, duration, and progression of active fires. This information is
used for strategic and tactical planning and management of wildland fire suppression
resources. Active fires are mapped at broad and local scales.

Broad Scale

The application of remote sensing systems to map actively burning lands has been
the subject of many studies as there is a significant need to identify and characterize
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active fires. At a broad scale, a number of satellite remote sensing systems are
currently used to map active fires. Satellite remote sensing systems that provide
broad-scale imagery typically provide excellent temporal resolution but lack suffi-
ciently fine spatial resolution. Two common satellite remote sensing systems used
in broad-scale active fire detection are AVHRR (Advanced Very High Resolution
Radiometer) and GOES (Geostationary Operational Environmental Satellites), both
operated by the U.S. National Oceanic and Atmospheric Administration. Originally
launched as weather monitoring instruments, AVHRR and GOES are utilized by
scientists to map fires. The Hazard Mapping System, used for both AVHRR and
GOES, is an integrated system that combines automated fire detection algorithms
with human interpretation to identify fire activity and smoke with multiple sensors
(McNamara et al., 2002). The automated fire detection algorithms used with these
sensors are quite robust considering the capabilities of the individual sensors. For
example, Li et al. (2000) compared the results of AVHRR 1-km fire detection
algorithms compared to burn areas delineated from conventional aerial surveillance
and satellite-based techniques. These results indicate that the AVHRR-based algo-
rithms sufficiently detected active fires, at the expense of increasing the number of
false detections, which is caused by AVHRR’s low saturation threshold in its thermal
bands, causing warm land features to be detected as fire. Feltz et al. (2003) reported
on validation efforts for the wildfire automated biomass burning algorithm used with
GOES imagery. The GOES sensor, with a spatial resolution of 4 km, consistently
detects active large fire locations, especially in equatorial regions of the world. Due
to higher satellite view angles, more errors occur when detecting active fires away
from the equator (i.e., boreal regions).

Another satellite sensor used frequently to map active fires is MODIS (MOD-
erate resolution Imaging Spectroradiometer) aboard NASA’s (National Aeronautic
and Space Administration) Terra and Aqua satellites, launched in 1999 and 2002,
respectively. The MODIS system extends the fire detection and mapping capabilities
of AVHRR and GOES and provides improved fire detection and mapping capabil-
ities. In addition, MODIS was developed to create integrated measurements of the
land, water, and atmosphere, including bands tailored to fire monitoring (Justice et
al., 2002; Kaufman et al., 1998). The U.S. Department of Agriculture (USDA) Forest
Service, in conjunction with NASA and the University of Maryland, uses MODIS
data to create Web-based interactive maps showing active fire locations (http://active-
firemaps.fs.fed.us and http://rapidfire.sci.gsfc.nasa.gov). This provides scientists,
wildland fire managers, and the public a frequently updated, synoptic view of the
fire situation at a broad scale. This information is used by wildland fire managers
and the public and is useful in areas with large wilderness areas, such as Alaska and
northern Canada.

Local Scale

Where more detail is needed, a different suite of remote sensing tools is available.
One of the resources available to local wildland fire managers is the use of airborne
thermal infrared fire-mapping systems. The process of extracting data from these
systems is referred to as infrared interpretation. Wildland fire managers can task
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airplanes with high spatial resolution thermal infrared sensors to image the fire to
record actively burning locations. These data can be rapidly transferred back to the
wildland fire suppression teams by transmitting the digital images to receiving
stations on the ground or by manual transfer methods. Airborne thermal infrared
mapping systems create highly accurate maps of active fire fronts and potential
dangers. This technology allows fire managers to focus energies quickly on the most
sensitive areas. After fires are contained, the focus of mapping efforts shifts from
active fire detection to burn scar mapping and capture of postfire effects.

POSTFIRE MAPPING

There is a significant need for accurate postfire data sets describing fire location,
size, and severity. Resource managers frequently use maps of cumulative burns
throughout their land base to update inventory and create management plans. Another
postfire information need is burn severity maps. As fires burn in varying levels of
severity throughout the burn scar, rehabilitation managers need to focus efforts on
the most severely burned locations. For both needs, remote sensing technology
allows scientists quick access to the required information.

Broad Scale

Satellite instruments available for broad-scale mapping have been used extensively
for burn scar mapping. Burn scar data are utilized for several applications, including
aerosol emission estimates, carbon cycle modeling, hazard assessment, resource
management, and policy creation. In Spain, Vazquez et al. (2001) created burn scar
maps showing fire sizes using images captured by the IRS (Indian Remote Sensing)
satellite Wide Field Sensor and Linear Imaging Self-Scanner sensors. SPOT
(Systéme pour I’Observation de la Terra) VGT (Vegetation) has also been utilized
to map burn scars in Australia (Graetz et al., 2003) and Africa (Brivio et al., 2003).
Fraser et al. (2000) and Fraser et al. (2003) used SPOT VGT multitemporal data to
create a procedure for continental-scale mapping of boreal forests in Canada. Amiro
and Chen (2003) not only used SPOT VGT imagery to map burn scars, but also
used the imagery to determine historical burn scar age across Canadian boreal forests.
MODIS is also regularly utilized to make broad-scale maps of burned areas (Martin
et al., 2002; Justice et al., 2002; Roy et al., 2003), as well as AVHRR (Al-Rawi et
al., 2001; Barbosa et al., 1998; Domenikiotis et al., 2003; Fernandez et al., 1997;
Kasischke and French, 1995). In addition to coarse spatial resolution sensors, rela-
tively fine spatial resolution Landsat data have been used to create general fire
disturbance maps over large areas (Bowman et al., 2002; Koutsias and Karteris,
2000; Kramber, 1992; Sa et al., 2003; Zarriello et al., 1995).

Burn scar mapping using low-to-moderate spatial resolution imagery is useful
to evaluate the location and extent of burned areas and to update resource inventories.
For example, during the summer of 2004, wildfires burned more than 4.4 million
Ha in Alaska and the Yukon Territory. Many of the fires were in rugged, remote,
inaccessible areas. At a regional and national scale, fire and resource managers used
moderate-to-coarse spatial resolution remotely sensed data to map the burn scars
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and update forest inventories. The imagery and methods used to create burn scar
maps also assist in the monitoring of aerosols present in the air, the creation of
carbon models, in making geologic hazard assessments, such as landslide potential,
and in the creation of policy and management strategies.

Local Scale

When greater detail about a burn scar is desired, another suite of sensors is required
to assess fire effects. Analysts use postfire imagery to estimate burn severity in terms
of soil and vegetation. One method for creating these maps is the use of aerial
photography. Aerial photography (digital or emulsion-coated film) provides excellent
spatial resolution and results in detailed images of burned areas. These images are
increasingly acquired and delivered in a digital format, which requires some image-
processing skills, such as the ability to georeference and terrain correct the images
(Bobbe et al., 2001). Because aerial photography usually covers a relatively small
area, many photographs are acquired, requiring subsequent correction and mosaick-
ing. The raster images can be added as a spatial layer into a geographical information
system (GIS) to depict postfire condition accurately and to overlay with other GIS
layers. Many cameras used for aerial photography can also acquire imagery using a
color-infrared band combination. Instead of the typical red-green-blue acquisition,
many cameras now include the NIR (near-infrared) band in place of the blue band.
The NIR band is especially sensitive to vegetation health, making it possible for
analysts to efficiently locate areas stressed by fire or other disturbances, such as insect
infestation (Hall et al., Chapter 4, this volume). Typically, using aerial photography
as part of a GIS for fire mapping is only feasible on smaller (<1000 Ha) fires due to
the large number of photographs that would require correction and mosaicking. For
instance, for a fire about 800 Ha, 35 photos of the appropriate scale would be required
to cover the entire burned area and produce imagery with 1 x 1 m pixel size.

The use of satellite imagery to map postfire condition has become an increasingly
common technology available to resource and rehabilitation managers. For example,
sensors such as Landsat-5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced
Thematic Mapper Plus), ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer), and SPOT-4 and -5 are widely used. These sensors provide
multispectral imagery that includes the visible, NIR, shortwave infrared (SWIR),
and thermal infrared bands at spatial resolutions appropriate for mapping of the
landscape at this scale. Most sensors acquiring imagery at this scale provide a large
footprint, from 60 x 60 km (SPOT and ASTER) to 185 x 185 km (Landsat). Unlike
aerial photography, one image from a satellite sensor is often sufficient to cover an
entire burned area. Plus, the satellite imagery is delivered in a digital format and
may already be in a georeferenced form.

BURN PATTERNS AND SEVERITY

Remote sensing technologies can be utilized to delineate burn patterns and varying
levels of severity. Burn severity can often be characterized by intensity and residence
time of the fire. Intensity and residence time within a fire area are dictated by a host
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of environmental factors, such as weather conditions, slope, prefire vegetation con-
dition and type, and ladder fuels. For example, some areas burn very hot for long
periods of time, destroying virtually all vegetation in the area and causing extensive
damage to the soil. Other areas may have only been visited by the fire for a short
time, killing the undergrowth and then moving along.

Depending on the audience, burn severity means different things. For silvicul-
turists, burn severity relates to timber or vegetation mortality. However, for soil
scientists and hydrologists, burn severity relates to the postfire soil condition. Parsons
and Orlemann (2002), soil scientists, defined burn severity as the degree of change
caused by the fire and measured in terms of soil hydrologic functions. Davis and
Holbeck (2001) also defined burn severity as a measure of how it relates specifically
to effects of the fire on soil conditions and hydrologic function. While satellite
imagery only measures first-order effects of a fire (such as vegetation mortality),
soil scientists and hydrologists utilize correlations between satellite reflectance and
the postfire soil properties. Augmented with field information, satellite reflectance
data can be processed to create burn severity maps that show postfire soil condition.

Assessment of postfire condition is a function of resource management require-
ments. There are two kinds of assessments that are commonly performed to map
postfire condition: emergency and extended. The purpose of each is dramatically
different and reflects the needs of the stewards of the local area.

EMERGENCY ASSESSMENT

Because fire can dramatically alter a landscape, many considerations must be taken
into account regarding stabilization and rehabilitation. In the United States, land
management agencies deploy BAER (Burned Area Emergency Response) teams to
“prescribe and implement emergency treatments to minimize threats to life or prop-
erty or to stabilize and prevent unacceptable degradation to natural and cultural
resources resulting from the effects of a fire” (USDA Forest Service, 2004, p. 17).
This task is important due to the danger that fires and burned areas create for years
to come. In areas of high burn severity, the land is susceptible to mud and debris
slides during and after every rain event. BAER teams not only have to locate those
areas of high burn severity, but also take into account the possible damage that could
be created downstream by the mud or debris slides. Team members must consider
such things as personal property, threatened and endangered species, archeological
sites, water supplies, and threats to soil productivity. Emergency assessments are
meant to be used to help direct emergency stabilization and rehabilitation. The timing
is also significant: Emergency assessments are done as soon as possible after fire
containment, typically between seven and ten days.

EXTENDED ASSESSMENT

Extended assessments highlight areas affected by the fire not discernible in the
emergency assessment. These assessments are more directed at resource manage-
ment. In some instances, vegetation may be severely stressed by a fire but not die
for a few months. In other cases, severely stressed vegetation may recover and not
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die. These delayed vegetation reactions are best monitored by an extended assess-
ment. These assessments are typically done during the first growing season following
the fire event, making it possible to differentiate between healthy growing vegetation
and dead vegetation. Extended assessments are useful for resource managers as they
seek an accurate depiction of vegetation condition following a wildfire as well as
an indicator of vegetation recovery.

COMMON BURN-MAPPING APPROACHES

With increases in fire size and severity throughout the United States and Canada,
fire managers are increasingly reliant on satellite imagery to map and characterize
postfire burn condition. During 2002, the USDA Forest Service’s RSAC (Remote
Sensing Applications Center) provided satellite imagery support to 73 incidents.
During that summer, the average size of the fire supported by BAER teams on U.S.
Forest Service lands was 15,000 Ha, including 5 larger than 40,500 Ha. Large fires
are very difficult to map via aerial reconnaissance and ground observations. Increas-
ingly, resource managers are utilizing remote sensing technology to map postfire
burn condition. A number of methods and techniques have been researched and used
in this effort, including KT tasseled cap, PCA, neural networks, and object-oriented
classification, NDVI, and NBR/dNBR.

KAuTH-THOMAS TRANSFORM

One technique used for burn area mapping is the KT transformation, also known
as the tasseled cap transformation (TCT). Kauth and Thomas (1976) created coef-
ficients for the transformation based on Landsat Multi-Spectral Scanner (MSS) data
to create a four-dimensional space from the original four MSS bands. The four new
axes represent a soil brightness index, green vegetation index, yellow stuff index,
and non-such index. Nearly all the burn area information can be found in the first
two indices, brightness and greenness (Jensen, 1996). Building on this pioneering
work by Kauth, Thomas, and others, new coefficients for Landsat TM and ETM+
sensors have since been created, often with indices called brightness, greenness,
and wetness (Crist and Cicone, 1984).

Patterson and Yool (1998) used the KT in an attempt to map fire-induced
vegetation mortality. Compared to another linear transformation, PCA, the KT per-
formed reasonably well. Henry and Yool (2002) used the KT, among other transfor-
mations, to derive landscape metrics useful in mapping burn severity. Liebermann
et al. (2004) used the KT on Landsat and IKONOS imagery to map fire effects in
California on a Mediterranean climate, chaparral-dominated ecosystem.

PrINCIPAL COMPONENTS ANALYSIS

PCA is another transformation used to analyze remotely sensed data. PCA is
described as a “dimensionality reduction technique that maps image data into a new
and uncorrelated coordinate system” (Pereira et al., 1997, p. 156). Nearly all the
multispectral image variance is shown in the first two axes, or components. Brewer
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et al. (2005) compared PCA with several image transformations for mapping burn
areas. Using all 14 bands from the pre- and postfire Landsat images, PCA showed
that Components 2 and 5 were the most correlated to burned areas. Pereira et al.
(1997) also found high correlation to burns in Component 2. Single-scene PCA
analysis has also been utilized successfully to map and characterize burn areas
(Patterson and Yool, 1998).

NEURAL NETWORKS AND OBJECT-ORIENTED CLASSIFICATION

Specialized image analysis software packages, including Definiens eCognition
(www.definiens-imaging.com) and Visual Learning System’s Feature Analyst
(www.featureanalyst.com) are used to map and characterize burn areas. These soft-
ware packages use object-oriented classification techniques and machine learning
technology, respectively, taking not only spectral characteristics into account, but
also spatial patterns. eCognition uses knowledge-driven and data-driven information
to create classifications. For training data, it can use many image-processing deriv-
atives, including KT, PCA, NDVI, multispectral and panchromatic imagery, NBR,
and other layers relating to topography, such as Digital Elevation Model, slope, and
aspect. Based on the training data and the other layer inputs, eCognition creates a
classification based on pattern recognition to produce objects as opposed to use of
more common pixel-based models or classifications. Mitri et al. (2002) used eCog-
nition to create models for burned area mapping on the Mediterranean island of
Thasos. eCognition was used to map burn/nonburn and degree of burn. The results
from this study showed burn/nonburn could be mapped with a strong agreement
with a field-derived fire perimeter (98.85% overall classification accuracy).

An additional commercially available software package to perform object-based
classifications on burned areas is Visual Learning System’s Feature Analyst (FA).
This software uses machine learning technology to create a classification. Users
apply training data to “teach” the software what the user is interested in mapping;
the software tries to find all instances of that object and then produces reports
showing an extraction of all those similar features. The user then is able to approve
or reject the results. The user can apply more training data or adjust the existing
training data until a suitable result is obtained (Vanderzanden and Morrison, 2002).
Brewer et al. (2005) worked with the developers of FA and tested the logic and
algorithms now used in FA to map burn severity on fires in eastern Montana.
Multitemporal analyses with FA provide excellent opportunities for consistency with
local or regional vegetation maps.

NORMALIZED DIFFERENCE VEGETATION INDEX

The NDVI is an index that highlights chlorophyll absorption and NIR reflectance
often indicative of vegetation content and vigor (Jensen, 1996). NDV1 has been used
as indicative vegetation biomass and has been commonly applied to map burn areas
(Chuvieco et al., 2002; Pereira et al., 1997). Spectral reflectance curves for normal,
healthy vegetation show a dramatic increase in reflectance of the NIR portion, while
the adjacent red portion of the spectrum largely absorbs light (Jensen, 1996). This
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dramatic difference in spectral response is accentuated with NDVI1, for which burned
areas respond with an increase in red reflectance and a decrease in NIR reflectance.
The algorithm is as follows:

NDVI = (NIR — Red)/(NIR + Red) (5.1)

The degree of change in reflectance is indicative of fire damage or effects. Henry
and Yool (2002) used the NDVI and other vegetation indices to characterize fire-
caused spatial patterns in Arizona. Sunar and Ozkan (2001) used the NDVI for a
multitemporal analysis of a burn scar in Turkey. Using a Landsat TM scene as a
prefire vegetation image and a postfire vegetation image from IRS-1C, NDVI was
useful in characterizing the burned area.

NormALIZED BURN RATIO

The NBR is another band ratio similar to the NDVI. In lieu of the red and NIR bands
used in NDVI, NBR uses the reflectance from the NIR and midinfrared bands, also
called the SWIR bands. NBR can be applied with multispectral imagery that has
NIR and midinfrared bands; however, the ratio works best when using the midinfrared
band centered at 2100 nm (Hudak et al., 2004). The algorithm is as follows:

NBR = (NIR — SWIR)/(NIR + SWIR) (5.2)

Healthy green vegetation reflects NIR energy. Conversely, NIR response
decreases where the vegetation is sparse. Midinfrared energy is largely reflected by
rock and bare soil, meaning that midinfrared band values will be high in bare, rocky
areas with sparse vegetation and low in areas of healthy green vegetation. Imagery
collected over a forest in a prefire condition will have high NIR band values and
very low midinfrared band values. Imagery collected over a forest after a fire will
have low NIR band values and high midinfrared band values.

Lopez-Garcia and Caselles (1991) used a ratio of Landsat Bands 4 and 7 and
found it to be a “good parameter for studying vegetation regeneration on burnt areas”
(p. 36). Pereira et al. (1997) also discussed using the 4/7 ratio for burn mapping,
mentioning that the midinfrared bands are less affected by atmospheric scattering,
therefore reducing scattering at the surface. In addition, as many natural materials
have a broader range of reflectance in the midinfrared bands than the visible bands,
it is easier to differentiate between different cover types.

Key et al. (2002) studied the use of the 4/7 ratio (which they normalized and
named the NBR) and undertook a comparison to other similar indices. Many
researchers have used a change detection approach based on the NBR, called the
dNBR in burn-mapping projects. The dNBR is simply an image differencing between
a prefire NBR and a postfire NBR:

dNBR = NBRprefire - NBRpostﬁre (53)
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RATIONALE FOR THE USE oF THE NORMALIZED BUrRN RATIO

Hudak et al. (2004) compared field observations to dNBR and NDVI values for fires
throughout the western United States that burned during 2003 and illustrated that
dNBR values consistently described vegetation burn severity better than the NDVI.
van Wagtendonk et al. (2003) performed a multitemporal analysis of dNBR values
created from the Airborne Visible and Infrared Imaging Spectrometer and Landsat
ETM+. Due to similar spectral capabilities, ANBR values from the Airborne Visible
and Infrared Imaging Spectrometer were comparable to ETM+ results. Brown (2002)
performed an analysis of the dNBR compared to traditional mapping techniques
utilized by scientists involved in postfire rehabilitation, finding the dNBR to be a
useful and accurate tool to map burn severity. Miller and Yool (2002) performed the
dNBR on imagery of the Cerro Grande Fire in New Mexico and found this process
more accurate than making a visual interpretation from high spatial resolution color
infrared photography. Brewer et al. (2004) compared the dNBR to a number of burn
techniques and found the dNBR to be the most practical tool for burn mapping and
applicable across ecosystems.

Single-scene NBR and two-scene dNBR image classification methods generally
produce overall accuracies in the range of 50-60% to delineate unburned, low,
moderate, and high burn severity classes (Bobbe et al., 2004). Based on the needs of
field teams in emergency assessments, this level of accuracy is acceptable. It is also
important to note that the highest accuracies were observed in the high burn severity
classes (67—74%). High burn severity classes also require the most focus and attention
from rehabilitation managers to mitigate the fire effects on the multiple values at risk.

The USDA Forest Service and U.S. Geological Survey use the dNBR method
to map postfire burn severity operationally as a support to BAER teams. Compared
to other methods, the dNBR provides the best representation of postfire burn con-
dition, and as a ratio it has proved applicable across ecosystems and regions. RSAC
developed models to apply the dNBR method operationally on pre- and postfire
imagery. Since 2001, RSAC has mapped nearly 2.5 million Ha of burned area for
BAER teams as an aid to perform emergency assessment activities. BAER teams
are dispatched to fire incidents to perform an emergency assessment highlighting
areas of greatest soil burn severity. This assessment directs treatments to areas that
would be most severely affected by the next rain event. As the timing of weather
events can be variable, BAER teams are typically given between 7 and 10 days after
fire containment to perform this assessment. Due to these limited time constraints
of BAER teams, RSAC creates a dNBR image using the best-available satellite or
airborne imagery. Typically, this is Landsat TM and ETM+. Due to the age of Landsat
TM and recent issues with Landsat ETM+, other imagery sources are investigated
on an ongoing basis. Alternate sensors that can be used operationally for this mapping
process are ASTER and SPOT-4 or -5. With ASTER revisiting a location eight days
after Landsat TM and SPOT having pointable functionality, suitable imagery can
typically be acquired within the BAER team time constraints.

The dNBR requires a pre- and postfire image, resulting in issues for non-Landsat
image types. For instance, having to build a prefire SPOT archive speculatively
would be expensive. Also, SPOT-4 and -5 each contain a midinfrared band, but their
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spectral wavelength most resembles Landsat Band 5, not 7. Hudak et al. (2004)
reported that the shorter midinfrared band in a ratio with the NIR band is inferior
for burn mapping to the true NBR ratio using Landsat Bands 4/7. Because of these
factors, SPOT imagery is used only when imagery from more spectrally appropriate
sensors is not available. ASTER imagery contains midinfrared bands (Bands 4-9)
spectrally similar to Landsat Band 7, making it a suitable substitute for Landsat TM
or ETM+ as a postfire image. Thus, ASTER imagery is often used as a source of
postfire imagery for BAER mapping.

BURN MAPPING CASE STUDY: THE WILLOW FIRE

Wildfires are a common occurrence in the southwestern United States. In 2004, in
New Mexico and Arizona alone 12 major fires burned nearly 121,000 Ha. The largest
of these fires, the Willow Fire, burned 49,080 Ha in central Arizona near the town
of Payson, with suppression costs of over U.S. $9 million. Further compounding
suppression efforts was that over 70% of the burned land was within a designated
wilderness area. Designated wilderness areas on U.S. Forest Service lands are
inaccessible to motorized travel. This lightning-caused wildfire started June 24, 2004,
and burned across a wide range of elevations and vegetation types. Accessing and
mapping this large burned wilderness area was difficult, which meant BAER per-
sonnel relied on remote sensing for support.

Daily fire growth was monitored on a broad scale by the MODIS Active Fire
Mapping program. Maps were created based on MODIS image acquisitions several
times daily. These maps showed fire progression, and image subsets were posted to
the Internet for public viewing. Airborne thermal infrared mapping support was
ordered to assist with detailed perimeter delineation and daily fire progression.
Between the MODIS and airborne thermal infrared mapping support, the incident
received daily updates on the fire condition based on remote sensing technology.

Near the end of the fire, BAER team leaders were tasked to perform an emer-
gency assessment of the Willow Fire within ten days of fire containment. To make
this assessment, they contacted RSAC for image support. RSAC created a dNBR
image using a prefire Landsat-5 TM scene (acquired July 2, 2003; Figure 5.1) and
the first usable postfire scene acquired over the burn area, a Landsat-5 TM scene,
acquired on July 4, 2004 (Figure 5.2). The dNBR data set and satellite image subsets
were posted to an FTP site for BAER team retrieval and used in initial mapping
efforts. Unfortunately, the Willow Fire burned another 15,000 Ha after the postfire
image was acquired; however, an adjacent, overlapping image was acquired on July
11. RSAC again created a dNBR image using the prefire scene and the new postfire
scene from July 11, 2004. Both data sets proved helpful in the creation of the required
burn severity maps for the incident (Figure 5.3).

CONCLUSIONS

Wildfires are a major disturbance on forested lands each year. While forest fire is a
normal and healthy part of the ecosystem, the nearness of human life and property
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FIGURE 5.1 Landsat-5 TM image showing the prefire (July 2, 2003) condition of the land-
scape. The town of Payson, Arizona, is at the top right of the scene.

to forested land creates new obstacles. Forest managers have to consider how the
burned land will react to subsequent weather events, in terms both of runoff and
erosion and of possible damage to human life and property. Because of this, mapping
postfire characteristics is critical. Remote sensing provides an excellent resource for
those involved in mapping fire effects. Remote sensing allows analysts to highlight
quickly the most sensitive areas that require immediate rehabilitation in an effort to
mitigate possible future damage.

Significant research has been performed on techniques to create maps of fire
disturbance. The NBR is appropriate to meet a range of fire and burn severity
mapping needs. Land management agencies in the United States currently use the
NBR as an initial input in the creation of burn severity maps. The NBR is applicable
across ecosystems, requires little a priori knowledge, and can be used operationally.
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FIGURE 5.2 Landsat-5 TM image showing the postfire (July 11, 2004) condition of the
landscape. Notice the clouds and related shadows in the image over the burn scar, a common
operational problem when using satellite imagery.
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FIGURE 5.3 The dNBR classified into four classes. In this image, black represents unburned
or very low underburn, while white represents high severity. BAER team members use this
data set as a starting point in their emergency assessment. Approximately 10% of the land
within the fire perimeter was unburned, 23% was low severity, 44% was moderate severity,

and 23% was high severity.
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INTRODUCTION

Scientists and policy makers from various institutions and agencies are currently
devoting substantial time and resources to study the implications of environmental
change in forests and woodlands, the most widely distributed ecosystem on the earth
(Mclver and Wheaton, 2005; Wulder, 1998). In the context of environmental remote
sensing, forest change, manifested as forest attribute modification or conversion, can
occur at every temporal and spatial scale, and changes at local scales can have
cumulative impacts at broader scales (Loveland et al., 2002). Natural resource
managers and environmental modelers thus require reliable information about the
ecological impacts associated with natural and anthropogenic disturbances to forests
(Bricker and Ruggiero, 1998; Mladenoff, 2005).

Current understanding of the extent and rate of forest change is inadequate
because (a) long-term large-area monitoring, suited to mapping conversions and
transitions, is in its operational infancy (S. E. Franklin and Wulder, 2002); and (b)
modifications to forest condition/abundance are difficult to detect with reliable
precision (Gong and Xu, 2003). As such, researchers and policy makers “lack ...
quantitative, spatially-explicit and statistically representative data on land-cover
change” (Lambin, 1999, p. 191). To redress this deficiency, the GIS science com-
munity has begun to explore new ways to detect, characterize, and monitor forest
change through the integration of remote sensing and GIS (geographical information
system) data and technologies (Kasischke et al., 2004).

The integration of remotely sensed and GIS data* takes four forms: (a) GISs
can be used to store multiple data types; (b) GIS analysis and processing methods
can be used for raster data manipulation and analysis (e.g., buffer/distance opera-
tions); (c) remotely sensed data can be manipulated to derive GIS data; and (d) GIS
data can be used to guide image analysis to extract more complete and accurate
information from spectral data. This chapter focuses on the fourth topic, with
acknowledgment of the gains made by the academic GIS science community in the
areas of spatial analysis, landscape conceptualization, and map validation (National
Center for Geographic Information and Analysis [NCGIA], 2005).

GIS data, such as topographic variables, were first integrated in remote sensing-
based vegetation mapping studies in the late 1970s because available satellite data
(e.g., Landsat Multi-Spectral Scanner) did not provide sufficient floristic detail for
effective resource management (see Franklin, 1995, and references therein). For many
applications, this problem is still current. The rationale for incorporating topographic
variables in single-date forest mapping is based on their correlation with forest species
or lifeform composition (Guisan and Zimmerman, 2000). For example, the Utah Gap

* GIS data in this chapter refers to all nonspectral digital entities included and used in forest map-
ping/monitoring applications. GIS data have also been described as “collateral” and “ancillary” as
compared to “primary” remotely sensed data (Jensen 2005).
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Analysis Program (GAP) land cover mapping program uses topographic data (eleva-
tion, slope, aspect, and position index) and soil data (carbon content, available water,
and quality) to produce fine-scale vegetation maps (C. Huang et al., 2003). In spite
of the substantial improvement in remote sensing technology and data quality (spatial
and spectral resolution) since the 1970s, however, the need for contextual GIS data
has actually increased because remote sensing scientists are posing more complex
questions than ever before (e.g., land change science; Turner et al. 1999; Turner,
2002). Including GIS data with remotely sensed data for the discrimination of land
cover classes typically results in higher overall map accuracies (e.g., increases of
5-10% overall) over those produced using spectral-radiometric data alone (Frank,
1988; Senoo et al., 1990; Strahler et al., 1978; Talbot and Markon, 1986; Trietz and
Howarth, 2000). For a review of recent advances in land cover mapping, see the work
of S. E. Franklin and Wulder (2002) and J. Franklin et al. (2003).

Forest change mapping and monitoring is feasible when changes in the forest
attributes of interest result in detectable changes in image radiance, emittance, or
microwave backscatter values (Coppin et al., 2004). Forest disturbances vary by
type, duration, and intensity (Gong and Xu, 2003). Disturbances such as wildfire,
insect infestation, disease, timber harvest, ice storms, flooding, and strong winds
usually result in highly variable (spectrally and spatially) damage at scales ranging
from leaves to landscapes (Attiwill, 1994). Accurate remote sensing assessment of
disturbance impact, severity, and rate of recovery (succession) can therefore be
difficult and even impossible in substantially heterogeneous landscapes in relation
to the sensor’s spatial, spectroradiometric, and temporal characteristics (Rogan and
Chen, 2004). When known or perceived changes to forest attributes occur but cannot
be detected, located, or characterized to an acceptable confidence level, GIS data
can thus play an important role in facilitating more robust change mapping (Rogan
et al., 2003).

Change detection analysis employing both GIS coverages and remotely sensed
images obtained prior to and following a disturbance has been used to assess specific
types of forest and woodland damage, including vegetation cover responses to
drought (Jacobberger-Jellison, 1994; Peters et al., 1993); insect outbreaks (S. E.
Franklin et al., 2003; Nelson, 1983); windthrow (Cablk et al., 1994; Johnson, 1994);
ice storm impacts (Olthof et al., 2004); and timber harvest (Nepstad et al., 1999;
Sader et al., 2003). In many of these studies, the integration of spectral and GIS data
was shown to improve substantially impact/damage assessment and map accuracy.

The objectives of this chapter are to describe how GIS data and technology can
be utilized as a tool to characterize forest disturbance and change, how GIS data
can be used to complement remotely sensed data, and how they can be used together
to map and model forest conversions and modifications.

INTEGRATION OF GIS AND REMOTELY
SENSED DATA

Complete integration of remotely sensed and GIS data is a long-standing problem
that has drawn the attention of the International Society of Photogrammetry and
Remote Sensing (Commission 1V) and the (U.S.) NCGIA (Initiative 12). The inte-
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gration of GIS data with remotely sensed imagery has witnessed increased interest
for the following reasons:

1. Increased data availability, quality, and decreased data costs across large
study extents (Davis et al., 1991; Emch et al., 2005; Treitz and Rogan, 2004)

2. Development of large-area forest mapping/monitoring projects using a
wide variety of spectral data captured by different platforms, featuring
disparate spatial and spectroradiometric characteristic capabilities (e.g.,
MSS vs. Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer) (Franklin and Wulder, 2002)

3. Demand for more precise estimates of disturbance impacts with Landsat-
like data (i.e., spatial and thematic resolutions) (Seto et al., 2002; Varjo,
1997; E. H. Wilson and Sader, 2002)

4. Growing need for automated mapping and map updating in complex
landscapes using expert systems/knowledge-based classification (X.
Huang and Jensen, 1997; Lees and Ritman, 1991; Raclot et al., 2005)

5. Demonstrated potential of data integration/fusion for predictive forest
change mapping (Baker, 1989; Mladenoff, 2005; Rogan et al., 2003)

Gahegan and Flack (1999) stated that the relationship between remote sensing
and GIS has traditionally been that of supplier (remote sensing) and consumer
(GIS). Typical remote sensing-derived products used in GIS analyses include base-
line forest cover and lifeform maps (S. E. Franklin, 2001) and forest cover change
maps used for map updating (Levien et al., 1999; Zhan et al., 2002); these are
available at spatial resolutions typically ranging from 10 m to 1 km. The current
spatial and spectral capabilities and limits of baseline mapping for generic change
detection are discussed in detail in the work of J. Franklin et al. (2003) and Rogan
and Chen (2004). In addition, digital elevation models (DEMSs) can be generated
using a variety of sensors and established methodologies (S. E. Franklin, 2001).
The primary methods for DEM production are stereogrammetric techniques using
air photos (photogrammetry), optical spaceborne imagery (SPOT [Systeme Pour
I’Observation de la Terre] and Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer), and radar data (interferometry). Airborne light detection and
ranging (LIDAR) data have been applied to terrain mapping. While LIDAR-derived
DEMs have fine spatial resolution and high horizontal and vertical accuracy, cur-
rently they do not offer widespread coverage (Jensen, 2005; Lim et al., 2003), with
some regional exceptions such as the Puget Sound Lidar Consortium
(http://rocky?2.ess.washington.edu/data/raster/lidar/index.htm). In addition, the
extraction of linear features such as roads, trails, and streams using high spatial
resolution optical data has reached a high level of sophistication and automation
(Song and Civco, 2004).

Remote sensing analysts have become avid consumers of GIS data as a means
to add value to remotely sensed data and analysis (S. E. Franklin, 2001). While there
are many superficial similarities between GIS and remotely sensed data, a few
conceptual differences make the complete integration of GIS and remote sensing
challenging. Dobson (1993) noted two chief problems related to remote sensing and
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GIS integration, such as incompatible data types (e.g., DEMs and census data) and
the lack of an integrated approach to spatial data handling. Lees (1996) noted that
the separate operational data spaces of spectral and spatial (GIS) variables must be
acknowledged to conduct meaningful analysis. GIS data space is defined by the
values of the direct/indirect variable of interest (e.g., temperature, elevation), while
spectral data space consists of a discrete slice of the electromagnetic spectrum, which
the remote sensing community needs to address further (Lees, 1996). Gahegan and
Ehlers (2000) discussed the transformation process from a remotely sensed image
to classified theme to subsequent GIS object and the error propagated at each step.
Gahegan and Flack (1999) added that benefits to more seamless integration include
the potential for more specific, and therefore more meaningful, data products and
the ability to use GIS products to provide typicality information (e.g., ecological
structure and function) as well as ancillary data to add more information to remotely
sensed products (see also Aspinall, 2002).

GIS data are integrated in forest cover mapping and monitoring in three primary
ways (Hutchinson, 1982):

1. Preclassification stratification — partitioning the study area based on
elevation gradients or watershed boundaries to minimize the number of
spectral classes or separate classes that are spectrally similar but geo-
graphically distinct (Cibula and Nyquist, 1987; J. Franklin et al., 1986;
Vogelmann et al., 1998). This method is particularly relevant in forest
disturbance contexts to mask either irrelevant or confounding scene fea-
tures (Coppin et al., 2004)

2. Postclassification sorting — partitioning mapped categories based on soil
type or slope to disaggregate or refine class membership* (Loveland et
al., 2002; Satterwhite et al., 1984; Shasby and Carneggie, 1986). This
method is in wide application in expert knowledge base approaches (X.
Huang and Jensen, 1997)

3. Direct inclusion — combining ancillary variables with spectral data in a
classificationt (Ricchetti, 2000; Rogan et al., 2003; Wulder et al., 2004).
This method is in increasing use with machine learning classification
algorithms

The first two methods are analytical and assume that the analyst has “expert”
knowledge of the study area and can therefore use environmental relationships in
the ancillary data (e.g., slope) to stratify the remotely sensed data so they will be
manipulated differently (e.g., one slope interval vs. another) via preclassification
stratification. Postclassification stratification uses expert knowledge to aggregate
map classes based on environmental relationships (e.g., vegetation classes can be
stratified by elevation zones). Typically, the use of either continuous or discrete

* This may be applied to refine categories generated using supervised classification or to label unsuper-
vised classes.

t Strahler (1980) also suggested the use of ancillary variables to calculate prior probabilities for the
maximum likelihood classifier to improve map accuracy, and this has been implemented in large-area
mapping using decision trees (Mclver and Friedl 2002).
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ancillary data is dependent on the classification technique used (Brown et al., 1993),
with similar variables represented as discrete (i.e., separated categories at critical
thresholds) or continuous (i.e., distance-based or interpolated coverage maps and
surfaces) in accordance with the input requirements. The first two methods have
therefore been used previously when parametric classification algorithms are
employed because they are unable to handle categorical inputs directly (Strahler,
1980). Direct inclusion takes an empirical approach to mapping where the ancillary
variables are included in the classification process with remotely sensed data poten-
tially to provide additional information for improved class discrimination (Rogan et
al., 2003). Wulder et al. (2004) stressed the need for data rescaling when DEM data
are included with remotely sensed data involving parametric classification algo-
rithms. Both continuous and discrete data are handled readily by nonparametric
machine learning algorithms (MLAs), however (Rogan et al., 2003; Saveliex and
Dobrinin, 2002).

GIS DATA As ENVIRONMENTAL VARIABLES

The selection of input data for forest disturbance mapping and monitoring can have
a significant impact on the final map product (Gong and Xu, 2003). Even when
using relatively simple processing algorithms such as a minimum distance classifier,
GIS data can facilitate detection and discrimination of target features, which could
prove more beneficial than scarce or poor-quality input data processed with a com-
plex algorithm. Biological, physical, and socioeconomic properties of the environ-
ment strongly influence land surface processes and human behavior and subsequently
vegetation composition, abundance, and condition (Steyaert, 1996; Warner et al.,
1994). This makes the selection and characterization of these variables increasingly
important (Guisan and Zimmerman, 2002). Further, Skidmore (1989) noted that the
relative importance of different types of GIS data can vary by spatial scale. For
example, topographic data can improve land cover map accuracy at local to regional
scales, whereas climate data become more important at regional to global scales.

GIS data that are potentially important in mapping, monitoring, and modeling
forest change are described in Table 6.1. Variables that describe topography have
been used in most environmental modeling applications (J. Franklin, 1995; Guisan
and Zimmerman, 2000) as they are correlated with vegetation distribution at a finer
spatial scale than climate variables (J. P. Wilson and Gallant, 1998; see Florinsky,
1998, for review of relationships between topographic variables and landscape
characteristics). Simple topographic variables such as elevation, slope, and aspect
most often represent indirect gradients (Austin and Smith, 1989) with respect to
forest species distribution. Slope, however, can be considered a direct variable in
the context of disturbance such as fire (i.e., slope steepness is directly related to
flame length and burn intensity) (Rogan and Yool, 2001).

Figure 6.1 presents a conceptual diagram of a forest disturbance mapping/mod-
eling scenario. The impact of abiotic and biotic disturbances on a forest stand is
mostly determined by the interaction of the intensity of dynamic disturbances (e.g.,
wind speed) and their severity, or immediate impact, as mitigated/enhanced by static
factors (i.e., topography), and the intrinsic properties of the forest stand (i.e., com-



139

Integrating GIS and Remotely Sensed Data

Aatjod/aouanyjul
s1usbodoiyiuy

uonisodwod

‘UonIpuU02 ‘8duepune
puels/saroads

(AanasjAisuaiul
pue adA1)
ssa20.d 8ouegINISIQ

alnisiow a|qe|reny

ainjeladwayl ‘anisiow
a|ge|IeAe ‘ainixal |10S
J0IARY3QJ-32URCINISIP
‘sonsusloRIeyd
10s ‘a1ewId

uoneIossy

snsusd ‘SN

>om ppay ‘pajidwiod

Kanins/yoieys [elise
tiom pray ‘pajidwiod

elep uonels

Jayyeam parejodiaiu]

SIN3Q@ Buisn sejnuwiioS

AE[€

a24nog

|eatiobae)

Jeuipio ‘[eariobared

[eulpio ‘fearioBare)

snonunuo)

|eariobared
‘leulpJo ‘snonunuoD

[eulpio ‘snonunuo)d

adAp

000'00T:T

ST

(NIAN) eH T~

wy y~

(w 0g~) 000'72:T

uonn|osai
[ea1dAp

| WY XapU1/MMM/096/A0B"SNSUSY MMM//:d1Y :01LOU0290100S
ANsuap 3|ng UMoId
‘biay ‘Ausuap ‘ygp ‘sardads ‘abe puels
/Sn°pay sy elyy//:dny :Alojusanul 1sa104
sia1awiiad adAy/fenowsal 1seAley Jagquuil]
sia1pwriad Ansusiul abewep wlols 89|
sla1wiad uonelssyul 1sad 108su|
slajawilad Jeas uing aIpIIA
|WIYS Xapu1/29A/SIpOW/eIep/NPa puun saeIwn’ 3o 6//:dny :aouequmsiq
uoneldioaid Jswwns ‘ainjesadwsy Ajnp
wnwixew ‘ainyesadws) Atenuer wnwiu
|winy wstid/arew|o/A06 epsnsaIu0oM MMM/ 1Y arewD
uonisod
adeaspue| ‘uoljelpes Jejos Buiwooul
‘xapul aimsiow oiydesbodoy :xajdwo)

10adse ‘adojs ‘uonens|s :ajdwis
/ssa|wieas/alisqam/nob sbsnssajweas;/:dny :Aydesbodo|

sa|dwrexy 324nos/adAy ajqerrep

salpn}s aguey) )salo4 ul ejeq S|D [enud)od
1’9 319V1L




140 Understanding Forest Disturbance and Spatial Pattern

Abiotic A  Biotic

Wind Population size
Dynamic ¢ ice accumulation mobility
temperature
moisture Intensity
b severity
Elevatlon

Static

Pre-disturbance

Post-disturbance

FIGURE 6.1 Forest disturbance mapping/modeling paradigm.

position, condition and, abundance). Because frequent and accurate data representing
dynamic drivers of disturbance are rare and costly to collect, readily available static
variables (e.g., elevation and slope) are more often used in conjunction with remotely
sensed data to map both disturbance and disturbance-risk (Medler and Yool, 1997;
Gemmell et al., 2002). For example, Khorram et al. (1990) found the indicator of
conifer forest decline, as defined by the percentage of defoliation, to be a function
of Landsat-5 Thematic Mapper (TM) (near infrared), elevation, and aspect.
Complex topographic variables (e.g., topographic moisture index, incoming solar
radiation) can have more direct influence on forest distribution and usually describe
a combination of factors such as soil texture and water availability associated with
the microclimate of a location (see Moore et al., 1991). The U.S. Geological Survey
provides a standard 1:24,000 (7.5-min) digital DEM data set for the conterminous
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United States (10-m DEM coverages are also available for some areas; see
http://edc.usgs.gov/products/elevation/ned.html). In 2000, the Shuttle Radar Topog-
raphy Mission obtained elevation data on a near-global scale to generate the most
complete high-resolution digital topographic database of Earth. The University of
Maryland Global Land Cover Facility editions of Shuttle Radar Topography Mission
data are available in three general formats: 1 arc-sec (30 m) of the United States; 3
arc-sec (90 m) of the world; and 30 arc-sec (1 km) of the world (http://www.land-
cover.org) (see Table 6.1).

Climate has a direct influence on forest distribution, typically through extremes
in temperature and precipitation amounts. Some of the earliest fine spatial resolution
(4-km) climate maps were produced through collaboration between Natural
Resources Conservation Service National Water and Climate Center and Spatial
Climate Analysis Service at Oregon State University. Based on a model named
PRISM (parameter-elevation regressions on independent slopes model), factors such
as rain shadows, temperature inversions, and coastal effects were incorporated in
the climate-mapping process (see http://www.ocs.orst.edu/prism/). Liu et al. (2003)
included elevation and temperature variables to map the entire land cover of China.

Existing land cover and land use data can be crucial for land cover stratification
and vegetation sampling and analysis. The historical legacy of a particular land use
on vegetation distribution has been examined (Foster et al., 1998). For example, Pan
et al. (2001) reported that physical attributes explain only a small portion of the
abundance of conifer species located on past abandoned land compared to land use
factors. The U.S. Geological Survey provides a land use and land cover data set
with 21 possible cover type categories, based primarily on manual interpretation of
1970s and 1980s aerial photography (see http://edc.usgs.gov/products/land-
cover/lulc.html). Existing vegetation maps, however, are currently considered too
coarse for detailed analyses (Coulter et al., 2000, p. 1329). Soil type provides
information on texture, moisture and nutrient availability, and pH and has been used
to prestratify a boreal forest based on mineral soil type to reduce the influence of
soil background variation of timber harvest mapping (Heikkonen, 2004). Soil data,
both spatial and tabular, are available from the (U.S.) Natural Resources Conserva-
tion Service.

Contextual socioeconomic data such as roads, distance to roads, and human
population (census) have been directly linked to forest change, usually in the form
of proximity to disturbance “potential” (Eastman et al., 2005). Chen (2002) discussed
the limitations involved in selecting an appropriate scale to which census data should
be disaggregated to be compatible with raster-based imagery (and GIS data). Mertens
et al. (2001) combined ecological, economic, and remotely sensed data to predict
the impact of logging activities on forest cover in east Cameroon. Results showed
that the occurrence of logging-induced forest cover modifications increased with the
value of forest rent.

Disturbance-related GIS data include burn scar perimeters, timber harvest poly-
gons, and flood maps and have been used in a variety of ways, including:

1. Masking previous/other disturbances not of interest to the mapping exercise
2. Calibrating and validating classification algorithms
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3. Testing the effectiveness of spectral change-thresholding procedures
4. Validating forest disturbance products derived from remotely sensed data

While extremely useful for change mapping studies, supporting GIS data are
rarely collected in a repeated and consistent manner or the same spatial resolution.
For example, in California, burn scar perimeters are available at 4-Ha minimum
mapping unit (MMU) on U.S. Forest Service lands, while state forest lands provide
121-Ha MMU data. However, 500-m 16-day MODerate Resolution Imaging Spec-
troradiometer (MODIS) burn scar products have recently become available for large-
area fire monitoring (see http://edcdaac.usgs.gov/modis/dataproducts.asp). Daily maps
of active thermal hot spots are available from the MODIS 8-day 1-km active fire
summary product data, indicating the spatial location of active fires (Roy et al., 1999).

ERrRORS IN GIS DATA

No digital data set is error free. An essential condition for successful integration of
GIS and remotely sensed data is an understanding of the error contained in the data
and propagated in subsequent analyses (Hinton, 1999). The topic of uncertainty (i.e.,
a quantitative statement about the probability of spatial data error) is a central theme
in GIS science literature. Accuracy assessment of land cover from remotely sensed
data is a mature topic (Foody, 2002). In contrast, accuracy assessment of the results
of change detection applications have received a relatively modest amount of atten-
tion in the remote sensing (change detection) literature (Woodcock, 2002). Categor-
ical variables such as soil type or land use are prone to errors, such as positional,
topological, and attribute inaccuracies. Guisan and Zimmerman (2000) noted the
importance of high accuracy in categorical variables because they often act as
“filters” for primary prediction when combined with continuous variables such as
elevation. While categorical data may be perceived to be more “accurate” than
remotely sensed representations when presented in vector format (e.g., crisp bound-
aries), they can often have a coarser minimum mapping unit than the image data
(Coulter et al., 2000).

Continuous variables, specifically topographic variables, have special impor-
tance in forest change mapping because they are commonly used in the derivation
of additional variables (see Hunter and Goodchild, 1997). The accuracy of topo-
graphic variables depends primarily on the accuracy of the DEM from which they
were derived (Florinsky, 1998). Various studies have investigated the effect of error
in DEMs on data derived from them (Bolstad and Stowe, 1994; Hunter and Good-
child, 1997; Lees, 1996). For example, slope computed from a DEM not only is
affected by the algorithm used to derive it, but also is affected by the precision of
the elevation values in the DEM (Perlitsch, 1995).

It has generally been accepted that, as the steps involved in derivation of a
topographic variable increase, so does its susceptibility to error (Guisan and Zim-
merman, 2000). Van Niel et al. (2004) noted that this is not always the case, however.
In a study that simulated the propagation of error in topographic variables, they
found that in some cases more complex variables such as net solar radiation were
less affected by error than relatively simple variables such as slope and aspect (Van
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Niel et al., 2004). Holmes et al. (2000) similarly found that topographic variables
derived by compounding values from a large number of DEM grid cells were affected
by errors most dramatically, and that while global error estimates may be low, their
local error measurements could be quite high.

In summary, the key challenges associated with a more complete understanding
of error in GIS variables involves a lack of procedures or protocol for quality control
of integrated data (geometric accuracy and thematic detail) and issues related to
different levels of data abstraction and representation (resolution and scale). Finally,
a common, yet often unreported, issue is that dynamic GIS data representations
such as land cover/use are out of date as soon as they are produced and may cause
map errors when used for image masking, class sorting, or predictive modeling
(Steyaert, 1996).

CONTRIBUTION OF GIS DATA TO FOREST
CHANGE MAPPING

The typical forest change detection and mapping process consists of the following
steps: (a) acquisition and coregistration of multidate imagery; (b) radiometric pro-
cessing; (c) image transformation and change mapping; and (d) validation and
change analysis (Coops et al., Chapter 2, this volume). GIS data are important for
all four steps (Table 6.2).

DATA AcQuisITION AND COREGISTRATION
Data Acquisition

From the outset of a change-mapping project, GIS data can be used to delineate
specific “mapping zones” (Homer and Gallant, 2001), such as geographic areas
(political boundaries), biomes (ecoregions), topography (watersheds), and land
cover/use/ownership. The use of mapping zones can serve to maximize spectral
uniformity, provide boundary delineation, and partition the workload into “logical,
feasible units” (S. E. Franklin and Wulder, 2002, p. 16). Ramsey et al. (1995)
concluded that ecoregions could be characterized based on phenological variation
of vegetation cover using normalized difference vegetation index distribution maps
as surrogates for net primary productivity. Bergen et al. (2005) used major land
resource areas defined by biophysical and socioeconomic constraints.

In many forestry applications, the “stand” is used as the minimum unit of analysis
rather than the pixel (J. Franklin et al., 2003) because medium-resolution Landsat
TM pixels often possess higher spatial resolution than the vegetation attributes under
investigation. Image segmentation has thus been applied to image data to delineate
forest stands (J. Franklin et al., 2000). At fine spatial scales, which may have specific
geographic features for detailed study, rivers and roads are often used for landscape
delineation. For example, Congalton et al. (2002) used stream buffers to aid identi-
fication and monitoring in a riparian forest. GIS data can also be used to delimit
target features or “damage zones” on thematic scales as broad as “the damaged area”
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to scales as fine as individual patches (e.g., wildfire burn scar and timber harvest
plan perimeters) (e.g., Rogan and Yool, 2001; E. H. Wilson and Sader, 2002).

Geometric Correction

Image data acquired by satellite and airborne sensors are affected by systematic
sensor, platform-induced, and terrain distortions that are introduced when image
geometry is not perpendicular. Accurate per-pixel registration of multitemporal
remotely sensed data is essential for forest change mapping because the potential
exists for registration errors to be interpreted as forest cover change, which can lead
to overestimation of actual change (Stow, 1999). Distortions in image data can be
corrected by developing a model to tie per-pixel image features to G1S-based ground
features (e.g., roads, streams, ridgelines [DEM], topographic maps). Further, in
mountainous areas, terrain displacement can be hundreds of meters. For example,
the 4-m multispectral image product from the IKONOS-2 will have nearly 600 m
of terrain displacement if the sensor acquires data over an area with a kilometer of
vertical relief where the sensor has an elevation angle of 60° (30° from nadir). To
remove the terrain distortions accurately, DEMs are used to perform image orthorec-
tification on optical and microwave data. Unfortunately, one of the shortcomings of
current DEMs is that spatial resolution is often too coarse for orthocorrecting fine-
resolution remotely sensed data such as QuickBird (2.44-m spatial resolution-mul-
tispectral) (Jensen, 2005).

RADIOMETRIC PROCESSING (TERRAIN CORRECTION)

DEMs and vegetation maps are commonly used in topographic normalization (terrain
correction) of optical and microwave data. For optical data, terrain correction pro-
cedures are typically based on a model that adjusts the radiance values measured
by a sensor using data depicting the local terrain (Smith et al., 1980). The Minnaert
model is used for topographic normalization, so called because reduction of topo-
graphic effects in each image pixel is based on the generation of a normalized
radiance value (i.e., the radiance that the pixel would have if the terrain within the
scene was flat). Because the Minnaert approach does not assume that surface cover
is a perfect diffuse reflector, it requires the calculation of a photometric (Minnaert)
constant K that is specific to land/vegetation cover; thus, implementation requires
in-depth knowledge of the study area. Additional details on radiometric processing
can be found in Chapter 2.

IMAGE TRANSFORMATION AND CHANGE MAPPING
Classification Scheme/Map Legend

The choice of change detection approach (i.e., categorical comparison and contin-
uous comparison) can profoundly affect the quantitative estimates of forest change
(Rogan and Chen, 2004). A problem with many forest cover classification schemes
is that the map categories are not always mutually exclusive, which results in class
confusion (Gong and Xu, 2003). Class confusion is prevalent in unitemporal forest
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disturbance mapping (Rogan and Franklin, 2001). For example, locally lower forest
biomass caused by an ice storm could be confused with a recently harvested forest
stand or senesced pastures with similar spectral properties. GIS data can be invalu-
able for minimizing class confusion. Bitemporal change detection does not suffer
the shortcomings of single-date, postdisturbance methods, but subtle change detec-
tion can benefit from the integration of GIS data (Coppin et al., 2004). For example,
Rogan et al. (2003) reported that environmental variables such as elevation and slope
were selected using a classification tree algorithm when the forest change classifi-
cation scheme involved nine discrete canopy cover change classes. This situation
contrasted sharply with variable selection using a simple change versus no change
classification scheme, in which only remotely sensed variables were selected by the
classification tree algorithm. Table 6.3 presents examples of studies that have inte-
grated remotely sensed and GIS data for forest change/disturbance mapping and
monitoring. Simple topographic variables such as elevation and slope have been
used most often in integrative remote sensing-GIS mapping studies.

Land cover and land use data are typically used to perform stratified random
sampling for field data collection. Detailed forest inventory information about stand
type, structure, and age has been used successfully to map insect damage through
the stratification of the calibration data set. These data were used to reduce the
variability in the calibration data based on logical decision rules related to host
susceptibility and forest structure (see S. E. Franklin and Raske, 1994; S. E. Franklin
et al., 2003; Skakun et al., 2003).

Classification Rule

Mclver and Friedl (2002) emphasized that all land cover classifications contain
elements that reflect analyst expectations. GIS data therefore play a prominent role
in providing typicality information as well as ancillary data to guide the choice of
decision rule. Slow but continual progress in the integration of spatial analysis
software and existing GIS packages has resulted in a growing number of methods
from which to choose when formulating inductive models to map forest change
(Eastman et al., 2005). Parametric classification algorithms such as maximum like-
lihood and minimum distance classifiers are available in standard image-processing
software. These methods generally produce repeatable and reliable results, but they
assume the input data are normally distributed (Carbonell et al., 1983).

Although a standard statistical method in other applications, such as predictive
vegetation modeling, generalized linear models (GLMs) have only been applied
recently to land cover mapping and monitoring (Morisette et al., 1999; Schwarz and
Zimmerman, 2005). GLMs extend classic multiple regression analyses by allowing
a less-restrictive form for error distributions (i.e., nonnormal and nonconstant vari-
ance functions) (McCullagh and Nelder, 1989). However, GLMs are less exploratory
than other more data-driven methods (e.g., classification trees) and require more
subjective model specification, requiring that variable transformations and interac-
tions must be explicitly defined a priori.

Nonparametric classification algorithms, such as machine learning, have more
recently been applied to forest characterization and change-mapping applications
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(Gopal et al., 1999). In addition to often producing better results, they allow for data
that are not normally distributed and offer greater ease in incorporating ancillary
data (Friedl et al., 1999; Skidmore and Turner, 1988). MLAs refer to the application
of induction algorithms that analyze information, recognize patterns, and improve
prediction accuracy through automated, repeated learning from training data (Car-
bonell et al., 1983; Malerba et al., 2001). There is a large body of research that
demonstrates the abilities of machine learning techniques, particularly classification
trees and artificial neural networks, to deal effectively with tasks involving data with
high dimensionality because of their ability to reduce computational demands sig-
nificantly for nonlinear data distributions (Gahegan, 2003). As a result, MLASs have
gained acceptance in the context of large-area forest mapping (Friedl et al., 1999;
Hansen et al., 1996) given the need for automated, objective, and reproducible
classification methods that can handle very large volumes of data across coarse
spatial scales (Borak and Strahler, 1999; Gopal et al., 1999; Hansen et al., 2000;
Hansen and Reed, 2000; Muchoney and Williamson, 2001). Classification and
regression trees have the potential to serve as rule generators for complex forest-
monitoring tasks because mapping decisions are transparent and explicit (Rogan et
al., 2003). In addition, decision trees can provide a “first cut” rule set as input to an
expert system and act as a bridge between automation and expert knowledge.

Expert system (also referred to as knowledge- or rule-based) classifiers are a
recently explored alternative to conventional supervised classification. Expert sys-
tems typically relate classes to properties through a series of rules representing
conditional statements and are favored for complex mapping tasks (X. Huang and
Jensen, 1997). Expert system approaches have several important advantages related
to their facility for incorporating GIS data in the rule-making (knowledge-generat-
ing) process. Unlike many statistical methods, expert systems do not have stringent
requirements about data distribution and independence (Quinlan, 1993). Expert
systems have been used to incorporate GIS data in several land cover mapping
applications (Comber et al., 2004; X. Huang and Jensen, 1997; Levien et al., 1999;
Raclot et al., 2005; Rogan et al., 2003). Ehlers et al. (2003) developed an automated
procedure for incorporating GIS layers, elevation, and multispectral image data for
fine spatial resolution biotype mapping.

Object-based or per-field approaches to forest cover mapping and monitoring
appear to be an emerging theme in the GIS science literature (Raza and Kaiz, 2001).
Despite widespread use, pixel-based methods for mapping generally do not make
use of the spatial and geometric properties of the data (Wulder, 1998). Object-based
classification methods allow for the incorporation of contextual information in the
mapping process. This type of application enables the segmentation of multispectral
imagery into meaningful homogeneous objects, or regions, based on neighboring
pixel spectral and spatial values. Although operational examples are rare, case studies
involving a variety of remotely sensed data types are becoming more common
(Lamar et al., 2005). Wulder et al. (2004) used segmented Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) data to estimate stand ages of regenerating lodgepole
pine forest stands. Segmentation aided the removal or masking of pixels on the
periphery of clearcuts that consisted of intact trees. Segmented polygons were shown
to represent more accurately estimated stand age than forest inventory polygons.
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Also, Hinton (1999) integrated airborne synthetic aperture radar and vector data
representing forest stands of a single species to minimize within-class confusion
and produced maps with 8% higher accuracy than a per-pixel method. Spatial errors
in the vector data initially resulted in a reduction in map accuracy prior to some
additional processing. One substantial drawback of object-based methods is that
land cover change may only be detected if a substantial proportion of the object is
modified. For example, when the unit of observation is a forest stand, multitemporal
changes do not always follow stand delineations (Varjo, 1997). The question of
whether stand delineations should be based on acquired images or existing GIS
coverages is subject to further investigation.

VALIDATION AND CHANGE ANALYSIS

An in-depth understanding of the processes of forest change/disturbance is predicated
on the ability to monitor forests accurately over several decades (Lambin, 1999). A
need exists for operational methods to assess the quality of large-area change maps.
Unfortunately, well-established accuracy assessment methods (i.e., using an indepen-
dent sample of validation data) that are commonly used at local scales are often not
practical at coarse scales. Validation can be based on existing maps. Siqueira et al.
(2000) validated a land cover map of the Amazon, based on Japanese Earth Resources
Satellite (JERS-1) data, using a combination of physiographic/climate-based vegeta-
tion maps, local vegetation maps, and Advanced Very High Resolution Radiometer
(AVHRR)-based land cover maps to estimate 14 vegetation classes with an accuracy
of 78%. High-quality local-scale maps can be used for large-area validation (Siqueira
et al., 2003). Stoms (1996) proposed the use of “maplets” for validating large data
sets — maps from local and state agencies for specific sites (e.g., a state park or a
project area). While promising, these fine spatial resolution products require careful
processing and preparation if they are to be used to validate coarser resolution
products acquired by different sensors for different operational mapping needs (Trietz
and Rogan, 2004). For example, uncertainty can be introduced into validation results
as a consequence of differences between the classification schemes of each map and
potential geolocation errors in both products (Fuller et al., 2003).

Efforts to compare different land cover products hinge on interoperability
between remotely sensed and GIS data sets. Inconsistencies between spatial resolu-
tions and land cover classification systems inhibit comparison and generalization
between large-area regional monitoring systems and global monitoring systems.
Recent work in GIS science has begun to reconceptualize the basis of land cover
classification systems by defining classes with formal parameterizations (Ahlqvist,
2004). Land cover classes are viewed as semantic concepts that can be defined by
quantitative parameters, such as percentage cover of tree crowns or texture indices.
Each class is defined by a collection of fuzzy set membership functions for a specified
number of continuous variables that describe the class. Salience weights are applied
to specify the importance of each variable to the definition of the land cover class.
To address the complexities of having different spatial resolutions in map compar-
ison, Pontius (2002) presented new statistical methods to partition effects of quantity
and location in a comparison of categorical maps at multiple spatial resolutions.
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CURRENT LIMITATIONS OF FOREST CHANGE
DETECTION AND MAPPING STUDIES

Data recorded by remote sensing instruments are valuable for providing information
on forest cover conversion and modification but are not always a consistent indicator
of discrete change events (Loveland et al., 2002). The detectability and accurate
characterization of forest disturbance using remotely sensed data are influenced by
the type of disturbance, the magnitude and duration of the modified signal, and
natural variability (species/stand/landscape). These factors can often result in high
errors of omission and commission in forest change maps. Indeed, map accuracy in
land cover change research is typically 15-20% lower than that found in single-date
land cover scenarios (Rogan et al., 2003). Figure 6.2 presents the conceptual trade-
offs that exist in a forest disturbance mapping scenario. Trade-off considerations of
typicality, data characteristics, and the classification/mapping rule become increas-
ingly problematic as landscape heterogeneity increases because the spectral variation
caused by forest decline often overlaps with spectral variation caused by topography,
species composition, and stand structure (S. E. Franklin and Raske, 1994). For
example, large-area mapping/monitoring is especially difficult because any land-
scape homogeneity at small spatial extents (e.g., a single Landsat image) can trans-
form into heterogeneity at larger extents (e.g., a mosaic of ten Landsat images)
(Wulder et al., 2004).

OMissioN ERRORS
Problem

Anthropogenic disturbances such as forest conversion to agriculture or urban land
use are typically mapped with replicable levels of map accuracy (Seto et al., 2002).
When the forest disturbance does not cause an acute alteration in the spectroradio-
metric or textural properties of the landscape, excessive omission errors are common.
For example, Olsson (1995) could not reliably map canopy cover decrease (less than
20-25%) caused by forest thinning using Landsat-5 TM data in a boreal forest
because damage did not result in a near-infrared reflectance decrease in excess of
0.015. Similarly, Souza and Barreto (2000) could not reliably detect/map the loca-
tions of selective harvest sites in tropical forest, using Landsat-7 ETM+ data, despite
having access to detailed field data on timber extraction.

When researchers seek to derive ordinal-scale disturbance information at fine
levels of thematic detail (i.e., high, medium, low), detection accuracy is often less
reliable for low-impact categories (Coops et al., Chapter 2, this volume; Rogan et
al., 2003). Dichotomous categories of forest change/no change can usually be
mapped using Landsat-like data with accuracies on the order of 80-90% overall
accuracy (Varjo, 1997). Detection of ordinal change/disturbance categories is a more
difficult task (Heikkonen, 2004), requiring more stringent requirements for calibrated
and corrected satellite data to remove noise. For example, Rogan and Franklin (2001)
reported that light wildfire burn severity areas were less reliably mapped than severe
areas in chaparral woodland because of spectral confusion with unburned vegetation
patches. Ekstrand (1990) reported that reflectance in Norway spruce decreased as
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Forest
Disturbance

Classification Rule

FIGURE 6.2 Diagram illustrating the trade-offs that exist in forest disturbance/change map-
ping where R = Reality; P = Precision; G = Generality. Typicality (information classes) and
spectral classes (remote sensing) are rarely in complete agreement with each other (i.e., R
G). Classification (decision) rules make suboptimal choices in the presence of image noise
or suboptimal sensor/data/scene models (i.e., P R). Generalization of well-modeled decision
rules is rarely possible over highly heterogeneous landscapes/regions/biomes (i.e., P G).

needle loss increased from 10 to 40% due to tissue damage and pigment alterations.
Variation in composition and density of forest stands was cited as the cause of low
accuracy levels because intercanopy shadowing affected the ability to discriminate
between low and moderate defoliation levels and caused spectral differences between
areas of similar defoliation conditions. Gemmell and Varjo (1999) reported problems
in detecting different levels of timber harvest in a boreal forest caused by variation
in tree species composition, type, and understory vegetation. Ciesla et al. (1989)
reported confusion between moderate levels of gypsy moth damage and conifer
plantations on shaded slopes.

Change detection approaches used to classify the cause of disturbance are prob-
lematic in that classes are not mutually excusive and totally exhaustive (Coppin and
Bauer, 1996). Further, several authors have found that partial-cut classes often have
higher omission errors than clearcuts (Heikkonen, 2004; E. H. Wilson and Sader,
2002). Higher temporal-spectral variation in peat soils versus mineral soils has also
caused confusion in mapping timber harvest (Varjo, 1997). While the radiation
ecology of forest understory has been cited as a source of confusion in detecting
overstory damage, subcanopy disturbances such as surface wildfires, brush clearing,
and floods are largely undetectable because the “disturbance signal” is blocked by
the overstory canopy (Rogan and Franklin, 2001). Other confounding influences on
the detectability of forest change include the rates of regeneration and recovery,
typically determined by climatic factors, plant adaptation to disturbance, and miti-
gation of impact by resource managers (Coppin et al., 2004).

Solution

Used judiciously, GIS data have the potential to mitigate some of the current limi-
tations of forest change mapping associated with map omission errors. In the first
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instance, information about forest cover or soil type could be used to help control
for the intrinsic landscape variability that can prevent adequate detection of subtle
disturbances (Heikkonen, 2004). GIS data can also provide cues and clues for
detection of cryptic target features, such as selective harvest in tropical forest, based
on information from other scene objects such as the use of roads and log landings
(Nepstad et al., 1999; Souza et al., 2005). Second, GIS data can be used directly to
provide additional predictive power to a classification algorithm (Eastman et al.,
2005). For example, using remotely sensed data alone, one cannot detect a burn scar
that occurred underneath a closed forest canopy. Burn detection accuracy, however,
may increase if a slope variable is added to the analysis when training data also
represent burn locations on certain slope intervals (Rogan et al., 2003). GIS data
can thus be used as environmental input variables potentially to serve to fill image
data “gaps.” From a temporal perspective, Brivio et al. (2002) found digital topo-
graphic data useful to overcome the limitation caused by the time lag between the
peak of a flooding event and European Remote-Sensing Satellite (ERS-1) synthetic
aperture radar satellite overpass to map flood damage.

ComMMIsSION ERRORS
Problem

Even if the signal of a forest disturbance is strong enough to overcome species-stand
variation to be detectable, it can be confused with landscape features having similar
spectral properties, resulting in map commission errors. Commission errors are most
prevalent in unitemporal change detection studies, in which only postdisturbance
images are used, and analysts do not have the benefit of multispectral “from-to”
information, common in bitemporal change detection (Coppin et al., 2004). Burn
scars are typically confused with asphalt roads and deep, clear water bodies in most
environments (e.g., Chuvieco and Congalton, 1988); secondary growth is often
mislabeled as pasture (and vice versa) in disturbed tropical forest (Powell et al.,
2004); recent timber clearcuts are occasionally misclassified as senesced meadows
in temperate forests (Levien et al., 1999); and heavy levels of gypsy moth damage
are confused with fallow fields and talus slopes (Ciesla et al., 1989). Such problems
of signature separability typically bias severe or high damage/impact disturbance
categories, resulting in “overclassification” in ordinal-scale disturbance maps.

The presence of other disturbance types (current or past) is a second source of
commission errors in forest change maps. In chronically modified landscapes, dif-
ferent types of natural and anthropogenic disturbances may spatially coexist and
interact over time (Attiwill, 1994; Kittredge et al., 2003; Souza et al., 2005). For
instance, the presence of old burn scars in a study area can be misclassified as light
burn (Key and Benson, 2002), and ice storm damage to canopy can be confused
with selective harvest removal. Further, it has been demonstrated that one type of
disturbance can influence the proclivity of a forest stand to future disturbance.
Macomber and Woodcock (1994) and Collins and Woodcock (1996) studied the
impacts of drought on insect pest mortality in temperate forests. Also, Lindemann
and Baker (2002) found forest blowdown sensitive to physical factors such as wind
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exposure, aspect, elevation, and forest cover type, while others have cited the sig-
nificant influence of previous clearcutting on windthrow (see Coates, 1997; Huggard
et al., 1999).

Solution

To mitigate commission errors in disturbance mapping, GIS data can be used to
create spatial masks of the landscape features most often confused with the distur-
bance type of interest (Levien et al., 1999). Objects with low optical reflectance
such as water and roads as well as topographic shadows can often be confused with
severely disturbed areas such as severe burns. Also, early stage secondary forest
growth is often indistinguishable from shrub and scrub vegetation (see Powell et al.,
2004). Where multiple disturbances are present or have a high probability of pres-
ence, GIS data representing previous disturbance events could be used to reduce the
potential confusion. For example, White et al. (2005) applied an “exclusionary”
mask generated from the locations of logged sites, water bodies, and cloud cover to
IKONOS-2 images to reduce variability in mapping mountain pine beetle outbreak.

SELECTED APPLICATIONS
BURN MAPPING

Detailed burn scar mapping is one of the most challenging applications of remotely
sensed data and remote sensing technology (Rogan and Yool, 2001). In addition to
the removal of vegetation and exposure of soil, the aftermath of combustion adds
new features to a remote sensing scene — charcoal and ash. Forest environments
burn with varying intensities (i.e., energy released per unit length of flame front, per
unit time), depending on fuel type, fuel load, fuel moisture, and topographic con-
straints (i.e., slope and aspect) (Pyne et al., 1996). Variation in fire intensity yields
variations in burn severity, ranging widely from partial consumption of vegetation
cover with little soil exposure or char/ash deposition, to complete consumption of
vegetation cover with high soil exposure and char/ash deposition (Pyne et al., 1996;
Yool et al., 1985). Consequently, the cumulative effect of a burn is often a hetero-
geneous mix of remote sensing image scene elements associated with burn severity
or damage to soil and vegetation (Clark and Bobbe, Chapter 5, this volume; Rogan
and Franklin, 2001; A.M.S. Smith et al., 2005).

Several problems make burn severity monitoring difficult using satellite imagery
(i.e., at coarse [AVHRR] or finer [Landsat-5 TM] spatial scales). The most commonly
reported problem is that burned vegetation patches are often confused spectrally
with nonvegetated surfaces with similar spectral signatures (i.e., asphalt roads, deep
water bodies). However, the effects of topography and smoke plumes confound these
factors. Topographically induced shade caused by illumination differences can create
spectral confusion between shaded unburned vegetated patches, shaded nonvegetated
patches, and burned patches (Chuvieco and Congalton, 1988). Over large areas,
vegetation diversity becomes problematic as it is difficult to assign a label of high,
medium, and low damage when vegetation diversity (lifeform) is also spatially
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variable (Rogan and Franklin, 2001). Thus, stratification by soil or vegetation would
be useful (Vigilante et al., 2004). Several applications to map burn scars have
successfully incorporated GIS and remotely sensed data (Chuvieco and Congalton,
1988; White et al., 1996). Medler and Yool (1997) combined composite terrain and
Landsat-5 TM imagery in a supervised classification to map wildfire mortality. Error
matrices indicated that this amalgam of satellite and ancillary data provided a 40%
improvement in accuracy compared to TM data alone. DEMs are not always useful,
however, when burn management/containment strategies are contrary to theoretical
fire behavior models (Rogan and Yool, 2001).

PEST INFESTATION

Many methods used for detecting insect defoliation were originally developed to
detect forest damage related to air pollution in European forests (Waldsterben) in
remotely sensed imagery (Herrmann et al., 1988). Factors contributing to insect pest
infestation include drought stress (Collins and Woodcock, 1996); high stand density;
species composition, age, elevation, aspect, vigor (S. E. Franklin, 2001); and soil
type (Bonneau et al., 1999). Compared to burn mapping, there are fewer operational
examples of pest damage mapping using medium spatial resolution data. This is due
to the high natural variability in forests affected by pests and the relatively light
influence of pest damage on the spectral response of medium-resolution/broadband
sensors (S. E. Franklin et al., 2003). For example, Nelson (1983) reported that a
moderate pest defoliation category could not be accurately delineated using Landsat
MSS data as it was usually confused with the reflectance variability of healthy forest.
This problem was also reported by Joria et al. (1991) using both Landsat-5 TM and
SPOT-2 data.

To address the previously stated challenges, Williams and Nelson (1986) devel-
oped techniques using a Landsat-5 TM Band 5/7 (mid infrared) ratio to delineate
and assess forest damage due to defoliating insects; they reported 90% overall
accuracy for delineating insect-damaged and healthy forest. The use of a nonforest
mask reduced classification confusion with nondefoliated areas in the scene that
displayed similar reflectance to defoliated canopy. Rohde and Moore (1974) analyzed
single- and multidate Landsat-1 data to detect the impact of gypsy moth. In this
early study, confusion of sites with defoliation with agricultural land use, or open-
face mining areas in postinfestation imagery only, was minimized using the multidate
images. S. E. Franklin et al. (2003) and Skakun et al. (2003) examined mountain
pine beetle red attack damage in lodgepole pine stands in British Columbia. Overall
map accuracies of 73-78%, using postinfestation Landsat-5 TM data, were facilitated
through the stratification of the calibration data set using polygonal forest inventory
data. These data were used to reduce the variability in the calibration data based on
logical decision rules related to host susceptibility and forest structure. This strati-
fication technique was applied previously to improve classification results of spruce
budworm defoliation in western Newfoundland (S. E. Franklin and Raske, 1994).

Waulder et al. (2005) used a polygon decomposition approach to integrate dif-
ferent sources of data (field data, aerial surveys, Landsat images) within a GIS to
examine the impacts of mountain pine beetle. Polygon decomposition was imple-
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mented by populating forest inventory polygons with the proportion (in percentage)
and area (in hectares) of damaged pixels that had been generated from Landsat-7
ETM+ data. Analysis of the combined data revealed that stands of high pine com-
ponent in the age category 121 to 140 years, with diameter breast heights above 25
cm, and with 66 to 75% crown closures were most susceptible to beetle attack.
Younger balsam fir (Abies balsamea) stands are more susceptible to spruce budworm
defoliation than mature stands. This makes satellite-derived age maps suitable for
mapping a determining factor of insect population levels useful in predicting future
outbreaks (Luther et al., 1997). Finally, Radeloff et al. (1999) excluded timber
clearcut areas and masked pure stands to detect jack pine budworm defoliation.

Ice STorm DAMAGE

Remote sensing applications in ice storm damage mapping were rare in the remote
sensing literature until the 1998 ice storm event, which affected large portions of
northern New England in the United States and southern Quebec and eastern Ontario
in Canada (Irland, 1998). Ice storm damage to forest canopy occurs at different
spatial and temporal scales and results in bending, branch loss, and topping. Damage
is often related to canopy architecture, tree size, age, health, and the mechanical
properties of the wood itself (e.g., elasticity and rigidity) (Pellikka et al., 2000).
Physiographic factors such as elevation and slope influence the depth and duration
of ice accumulation (Irland, 1998). Olthof et al. (2004) found that a neural network
classifier produced damage maps with higher accuracies than the conventional para-
metric classifiers when ancillary environmental variables (ice accumulation, eleva-
tion, slope, aspect, distance from forest edge) were incorporated into the classifica-
tion process. Classification accuracy improved from light, medium, to heavy damage
categories (19.5%, 44.4%, 77.3%, respectively). Overall damage classification accu-
racy was approximately 65%. Ice storm damage is indicative of the complexity found
when seeking trends related to the influence of environmental factors resulting from
a particular disturbance event (e.g., elevation, aspect, slope, and forest type). In
reviewing the increasing body of literature on the topic, environmental variables
such as “distance to forest edge” played a significant role in damage prediction in
some, but not all, studies.

TiMBER HARVEST

Timber clearcut detection and monitoring appears to be one of the most successful
and reliable applications of remotely sensed data in forest disturbance mapping.
Franklin et al. (2000) presented a comprehensive examination of harvest-related
change over 15 years using Landsat-5 TM data in the Fundy Model Forest, New
Brunswick (Canada). Multitemporal change thresholds (based on Kauth-Thomas
wetness) were calculated based on spatial information concerning areas disturbed
by clearcutting, partial harvesting, and silvicultural treatments. Further, GIS inven-
tory data were used to mask all nonforest areas for final forest change mapping.
Gemmell and Varjo (1999) reported problems in detecting different levels of timber
harvest in a boreal forest caused by variation in tree species composition, type, and
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understory vegetation. In addition, when the unit of observation is a forest stand,
multitemporal changes do not always follow stand delineations (Varjo, 1997).

Heikkonen (2004) prestratified a boreal forest area based on mineral soil type
only to reduce the influence of soil background variation timber harvest mapping.
Masks are often applied to eliminate “irrelevant areas”, such as water bodies and
extreme slopes, from analysis (Wilson and Sader, 2002, p. 7). Saksa et al. (2003)
promoted the use of predelineated segments or pixel blocks for image differencing
to decrease the number of misinterpreted areas in a study. In this work, a digital
forest mask was considered “crucial” to operational applications. Nilson et al. (2001)
stated that thinning in boreal forest could result in the appearance of bare soil, cutting
waste, and subcanopy vegetation. Heikkonen (2004) found a moderate harvest cat-
egory (thinning and preparatory cut) least accurate compared to no change and
considerable change categories. Selective logging is becoming a major form of
disturbance in tropical forests (Cochrane and Souza, 1998). These modifications are
often difficult to detect (Coops et al., Chapter 2, this volume). Conway et al. (1996)
improved the detection of selectively logged areas using expert knowledge of the
topography and soil disturbance patterns of logged tropical forests.

CASE STUDY: THE CALIFORNIA LAND COVER
MAPPING AND MONITORING PROGRAM

To address the growing threat to forest and shrubland sustainability caused by rapid
and widespread land cover change in California, the U.S. Forest Service and the
California Department of Forestry and Fire Protection are collaborating in the state-
wide Land Cover Mapping and Monitoring Program (LCMMP) to improve the
quality and capability of monitoring data and to minimize costs for statewide land
cover monitoring (Levien et al., 1999). The long-term goals of the LCMMP are to
develop a baseline to monitor the amount and extent of forest and rangeland
resources, to track forest health trends, and to examine the effectiveness of existing
environmental policies. Monitoring data created by the LCMMP quantifies changes
to forests, shrublands, and urban areas across 70% of California and provides
necessary information for regional assessment across jurisdictional boundaries
(Levien et al., 1999). A key advantage of this cooperative program is that monitoring
information provides a single consistent source of current landscape-level and site-
specific change to the U.S. Forest Service and California Department of Forestry
and Fire Protection as well as other interested federal agencies. The LCMMP maps
and monitors land cover according to the boundaries of 20 or more Landsat scenes
and ecological subsections from the National Hierarchical Framework of Ecological
Units (Bailey, 1983). The total area includes approximately 2 million Ha of National
Forest Service lands.

The data-processing flow of the LCMMP is presented in Figure 6.3. The
LCMMP uses Landsat-5 TM and Landsat-7 ETM+ satellite imagery within five-
year monitoring periods. Changes in forest, shrub, and grassland cover types are the
primary focus of this program, but changes in urban/suburban areas are also mapped
(Table 6.4). These change maps are required for regional interagency land manage-
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TABLE 6.4

Classification Schemes for LCMMP Phase | and
Phase Il Land Cover Change Maps

Phase | change classes

Large decrease in vegetation
Moderate decrease in vegetation
Small decrease in vegetation

Little or no change
Moderate increase in vegetation

Large increase in vegetation

Nonvegetation change

Phase Il change classes

—71 to —100% canopy change
—41 to —70% canopy change
—-16 to —40% canopy change
Shrub/grass decrease > 15%
+15% canopy change

+16 to +40% canopy change
+41 to 100% canopy change
Shrub/grass increase > 15%
Change in developed areas
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ment planning, fire and timber management, and species habitat assessment and for
updating existing land cover maps at a low cost per unit area cost (approximately
$0.01/Ha) (Levien et al., 1999, 2002).

Landsat imagery that has been geometrically rectified, radiometrically normal-
ized, and subset into processing areas is ready for input into the change-mapping
process (Levien et al., 1999). A concurrent process involves preparing and mosa-
icking ancillary data layers, including vegetation maps based on California Vegeta-
tion (CALVEG) vegetation categories, fire history perimeters, and timber planta-
tion/harvest information. Ancillary data are used both as a masking tool and as a
means for stratification to label the change classes and implement the sampling
design for field data collection. Image features are then extracted from the Landsat
(E)TM data using texture (Band 4) and multitemporal Kauth-Thomas routines. An
unsupervised classification is applied to each per-scene change image by CALVEG
lifeform category, resulting in 50 change classes per lifeform. Each change class is
labeled according to its level of change based on a gradient of change from large
decreases in vegetation to large increases in vegetation. The final product from Phase
| is a change map containing a gradient of classes that ranges from large decreases
in vegetation to large increases in vegetation.

The goal of Phase Il is to make a land cover change map representing discrete
changes in forest and shrub cover. The change map legend is shown in Table 6.4;
it describes three discrete categories of forest canopy cover decrease and two classes
of canopy increase. Further, a shrub cover increase and shrub decrease class is used,
along with change in developed (urban) areas and no change (£15% canopy change)
categories. The £15% no change class was designed to reduce the confusion between
phenological changes and postdisturbance increase classes by allowing for minor
increases/decreases in vegetation abundance. Ground reference data are obtained by
estimating forest canopy cover change within a five-year time frame using two sets
of aerial photographs and in situ information. To calibrate canopy cover estimates
from air photos, photo-interpreted canopy cover measurements are compared with
those measured in the field. The result of this analysis is a calibration/validation
data set portraying classes of canopy cover change, which are then used in the
change-mapping process.

An example of the Phase Il change map for a pilot study region in southern
California is shown in Figure 6.4. A general map accuracy assessment is performed
on the land cover change maps. Final products from Phase Il include the land cover
change map derived from the classifier featuring discrete canopy cover change
classes and the GIS database identifying the locations of vegetation change with
cause information for coniferous forest, hardwood rangeland, shrub cover, and urban
areas. This product is then made available to various national resource agencies for
ecosystem management activities (Levien et al., 1999). Related products can be
found at: http://www.fs.fed.us/r5/spf/about/fhp-change.shtml.

CONCLUSIONS AND FUTURE DIRECTIONS

“The mapping and measurements of small to medium scale changes over large areas
requires levels of precision in mapping which are near impossible to achieve with
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satellite image classifications alone” (Fuller et al., 2003, p. 252). In response to the
potentially confounding effects forest disturbances have on single-date mapping
applications and the confusion caused by landscape heterogeneity on disturbance
mapping applications, recent research has focused on strategies to reduce map
confusion using new methods or additional data (Rogan et al., 2003). Advances in
GISystems and GIS data availability, quality, and type in combination with advances
in GIScience research can potentially mitigate the current challenges of large-area
monitoring and detailed investigations of subtle forest modifications — two chief
impediments to in-depth understanding of the scale and pace of forest change. Smith
etal. (2003) stated that digital remotely sensed imagery is soon likely to be a standard
instrument in the repertoire of the professional forest manager because the nexus of
technology and need has finally occurred. Ustin et al. (2004, p. 689), however, held
that “after 30 years of remote sensing, we are still struggling to understand how to
interpret the information content in images.” To integrate better GIS and remotely
sensed data and technology with the needs of forest management, we present some
important research themes for the near future:

1. Future developments should include expert systems that make better use
of multisensor approaches and context-based interpretation schemes
(Davis et al., 1991; Fuller et al., 2003).

2. GIS intelligence (e.g., object and analysis models) should be used to
automate the forest change/disturbance classification process. In return,
GIS objects can be extracted from a remotely sensed image to update the
GIS database (Ehlers et al., 2003).

3. Single research methodologies do not suffice for a complete analysis of
forest cover change. Instead, a sequence of methodologies is needed that
integrates disciplinary components over a range of spatial and temporal
scales (S. E. Franklin and Wulder, 2002).

4. Representation of land cover as continuous fields of various biophysical
variables for accurate detection of forest degradation (Lambin, 1999).

5. Increased data integration requires further investigation into data accuracy
(Ahlgvist, 2004; Fuller et al., 2003).

While there are some outstanding issues to address, data products developed
through the integration of remote sensing and GIS enable the capture and represen-
tation of disturbance over a range of scales with predictable results. These distur-
bance products are suitable for further analysis to better inform landscape level
dynamics, patterns, and resultant implications.
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INTRODUCTION

Spatial patterning in forests and landscapes has long been of interest to ecologists,
foresters, and managers. From the “natural” forces that shape landscapes (such as
fire and insect outbreaks) to the cultural and anthropogenic forces that shape land-
scapes (road building, urbanization, and harvesting), the quantification of these
patterns has been a major focus of much of ecological and management-related
research. Many of the reasons for such interest in the quantification of spatial pattern
have been elaborated on in previous chapters in this volume. The technological and
conceptual advances in remote sensing have shaped the way landscape ecologists
(the inventors of pattern analysis techniques discussed here) conduct research. It is
likely that the discipline of remote sensing will continue to wield this important
influence. In this chapter, the interplay between remote sensing and pattern analysis
(using landscape metrics or landscape pattern indices) is emphasized in an attempt
not only to provide context for how pattern analysis is currently conducted but also
to explore the ways in which pattern analysis might develop in the future.

The study of spatial pattern has progressed rapidly in only a matter of decades,
from the early days of spatial analysis (the 1970s) when paper maps were simply
overlaid with overheads and plasticine layers of other maps, to the automated routines
of geographical information system (GIS) and image analysis software that can
generate hundreds of landscape pattern indices (LPIs) in minutes. The discipline of
remote sensing and related advances and techniques to a large extent can be credited
for the ability to ask questions about spatial pattern at broad scales. The ability to
ask questions at the broader scales on large landscapes (tens of thousands of kilo-
meters) as opposed to the fine, plot-level scale of traditional ecology and routine
field sampling was a major advance in spawning the discipline of landscape ecology.
The fact that such databases as Landsat are familiar to, and routinely used by, those
in a wide variety of environmental sciences is a major contribution to the environ-
mental sciences. However, as pattern analysis software and imagery become more
widely available, the potential for misuse of these tools and data are nontrivial.

Interestingly, the latest advances in remote sensing techniques not only allow
the analysis of these broad regions of interest to landscape ecology, but also are now
producing fine-scale, submeter resolution data sources (e.g., using IKONOS, Quick-
Bird). This fine scale was until recently the purview of field-sampling programs and
the mainstay of traditional field ecology, forestry professionals, and field managers
(Wulder, Hall, et al., 2004). Because of this new convergence of spatial scales, it is
useful to assess the philosophy and lessons learned from spatial pattern analysis
within the context of the future directions of remote sensing that will include these
finer spatial resolution sources of data. While aerial photos and GIS also largely
helped shape ecological research and management, spatial pattern analysis was
largely driven by a “Landsat view” of the world, given its ubiquitous and extensive
coverage and compatibility with raster-based LPI techniques.

The goals of this chapter are to examine the linkages between remote sensing
and spatial pattern analysis and how they might both evolve to assist in the
assessment of landscape change. First, the basic concepts of pattern analysis are
discussed. This discussion also examines pattern analysis within the context of our
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prevailing conceptual notions of fragmentation, which have advanced considerably
over time, as well as discusses issues of relevance to quantifying natural levels of
variability in fragmentation and disturbance in forested ecosystems. While main-
taining a focus on raster data, several questions are posed that could benefit pattern
analysis greatly through more collaborative work between remote sensing scientists
and landscape ecologists.

HOW DO WE MEASURE SPATIAL PATTERN?

Before delving into the implications of new remote sensing techniques for pattern
analysis, a review of some of the major concepts in pattern analysis is warranted.
Readers familiar with the tools of pattern analysis from the perspective of landscape
ecology might consider skipping to the next section. Those interested in “hands-on”
experience with pattern analysis software (using pre-prepared data sets and free
software) may benefit from examining the work of Cardille and Turner (2001) and
Greenberg et al. (2001).

IMPORTANCE OF GRAIN, MINIMUM MAPPING UNIT, EXTENT, AND
CLASSIFICATION SCHEME

For those relatively new to pattern analysis using landscape metrics or landscape
pattern indices (Table 7.1), the primary goal is often to use a classified map and ask
such basic questions as:

How many cover types are on this map?

What proportion of the map is occupied by old forest?
Which forest types are fragmented and dispersed?
Which cover types are highly connected?

How many remnant forest patches are there?

How many burned forest patches are there?

Interestingly (or unfortunately), the answers to the above questions are very much
influenced by the grain, minimum mapping unit (MMU), extent, and classification
scheme used to create the map. Furthermore, not only can quantitatively different
answers be obtained, but also qualitatively different answers may be obtained using
the exact same map with different grain, extent, and classification scheme. Similarly,
changes through time in one location (i.e., the results from an analysis of change
detection) may be erroneous if the maps that are compared differ in any of these
aspects. This is a nontrivial point that is important to consider not only in one’s own
analysis but also in interpreting the results of others. Examples of the impact of
these decisions are numerous, and a few generalities are relayed here.

Grain

Grain size is one aspect of scale and in the context of raster maps is typically
analogous to the pixel size on a regularly partitioned square tessellation (or the
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spatial resolution of the image data source). Earlier studies suggested that changes
in landscape pattern indices due to scale changes may not be extremely problematic.
For example, aerial photography used to create raster maps of varying pixels size
(4-, 12-, 28-, to 80-m cell sizes) suggested that in some situations the effects of
changing scale were not dramatic (Wickham and Riitters, 1995). Another early study
found that while pattern indices were sensitive to change in grain, estimating land-
scape pattern indices at different scales was fairly feasible using aggregation algo-
rithms (Benson and MacKenzie, 1995).

Recent work suggests more serious complications than initially identified, with
increases in grain size generally leading to the loss of the most rare or fragmented
classes on a map. Interestingly, it is precisely such cover classes that are often of
concern to conservation (rare habitat) or management (small patchy disturbances).
This loss of the rarest classes is then accompanied by an increase in the most
dominant cover classes. With increasing grain, the complexity of patches will likely
decrease as the edges between classes will be underestimated (Turner et al., 2001).

A comparison of SPOT (Systeme Pour I’Observation de la Terre) multispectral
high-resolution visible, Landsat Thematic Mapper (TM) and National Oceanic and
Atmospheric Administration Advanced Very High Resolution Radiometer (AVHRR)
suggested that indices such as landscape division and the largest patch index may
be less sensitive to this type of scale change (Saura, 2004), whereas the number of
patches, edge length, and mean patch size were quite sensitive to varying resolution
and should not be compared among maps with varying resolution (Saura, 2004).
Another fragmentation metric, patch cohesion, while sensitive to resolution at low
proportions of remaining habitat, is less sensitive at higher proportions. Incidentally,
because the metric is less sensitive to changes in spatial pattern (aggregation) at
high proportions, it is less useful for quantifying habitat fragmentation (Saura, 2004).
Thus, different metrics might respond quite markedly to changes in grain.

Due to the diversity of responses of metrics to changes in grain, studies have
attempted to create scaling laws for translation of the results of a pattern analysis
across scales, using both “real” and “simulated” landscapes (Shen et al., 2004; Wu,
2004). Shen et al. (2004) found several general groupings of pattern indices accord-
ing to their scaling behavior and suggest the following groupings:

e Type | showed predictable behavior with simple scaling functions such
as power laws or linear functions

< Type Il exhibited stair-step response patterns and were essentially not
predictable

e Type Ill showed unpredictable and erratic responses to scale changes

Other work has even attempted to use less-spatial, coarser-scale forest inventory
(stand attribute data) data to predict the values of pattern indices at finer scales
(Cumming and Vernier, 2002; Kleinn, 2000). Despite this work, reliable, well-tested,
universal scaling laws, which are transportable among different regions, currently
do not exist.

As noted by Saura (2004), most of the studies that examine the impact of
changing grain cell size do so by “coarsening up” of an existing image (with
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exceptions, including Benson and MacKenzie, 1995 and Saura, 2004). Such artificial
coarsening is important as scaling laws using artificially coarsened data (in contrast
to spatial data from a coarser spatial resolution sensor) may be subject to the
influence of significant aggregation errors due to the assumptions used for grouping
pixels. For example, a majority rule filter may result in a more fragmented pattern
(on the coarser version) than the pattern on an image derived from a coarser scale
sensor (Saura, 2004). Differences in fragmentation metrics from maps created
through aggregation (via majority rules) versus metrics from coarser-grained sensors
suggest that the values for number of patches, mean patch size, and edge length may
suggest a higher level of fragmentation in a landscape with cells that have been
aggregated (Saura, 2004). The loss of information and errors resulting from the
aggregation of fine-scale data into coarser scales have been well examined, with a
useful overview provided by Turner et al. (2001). A variety of equations which are
helpful in reducing the errors in the resulting areal estimates of cover types exist
and there are rules that can be followed to ensure that the value of proportion is
maintained even over several aggregations (Turner et al., 2001).

Nonetheless, even when comparing images at different scales that have not been
artificially coarsened but are derived from different sensors, some important issues
must be considered. An early study compared SPOT Landsat TM and AVHRR
imagery classified into two classes using the near-infrared band to distinguish land
and water (Benson and MacKenzie, 1995), with a high resultant accuracy (92%
accuracy for water and 99% for land). As the pixel size changed from 20 m to 1.1
km, percentage water decreased by 44% (Benson and MacKenzie, 1995). Thus, the
areal estimates obtained for cover classes obtained from different resolution sensors
may also vary and must be accounted for when examining changes in pattern indices.

Minimum Mapping Unit

A related issue often confused with grain cell size is that of MMU. This is often
referred to as the size of the smallest area that will be mapped as a distinct area.
Often, a MMU is implemented in the postclassification phase as small remnant
patches (below some minimum size) are removed through use of a majority (modal)
filter or other technique. The rationale is to remove the speckled “salt-and-pepper”
apparent in an image. In practice, this idea is often confused with grain (by nonre-
mote sensing scientists) due to a failure to recognize that the MMU is used “post
hoc” in a classification scheme. Maps with the same grain and extent but differing
MMUs can have quite different resulting landscape metrics (Langford et al., 2006;
Saura, 2002).

Rare and fragmented cover types may be lost when using an increased MMU,
along with a concomitant increase in the most dominant cover classes (Saura, 2002).
The implications of this procedure are directly relevant for any study that examines
patch sizes because the smallest patches are assumed to be errors in this context and
thus are removed from the image. Thus, simple measures of fragmentation such as
the total number of patches and mean patch size should always be viewed with
caution, with some explicit discussion of the grain and MMU implemented on the
map from which the pattern indices are drawn.
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Fragmentation metrics such as landscape division and related indices have been
suggested for use when comparing fragmentation among images with different
MMUs (Saura, 2002). It has been suggested that mean shape index in particular
should not be used when comparing maps with different MMUs (or even a different
patch size distribution) as it is most sensitive to MMU, while an area-weighted mean
shape index is robust. However, the ideal situation would use images with identical
MMUs. The frequency with which MMUs are used in the postprocessing of spatial
data, and the fact that MMUs may differ among cover classes, combined with the
frequency of use of patch level statistics for pattern analysis suggest that this issue
should always be explicitly mentioned in any pattern analysis.

Extent

The spatial extent of an image, or the total area of an image, can have an impact
on the results of a pattern analysis. An increase in the spatial extent examined
often leads to an increase in the number of cover types observed (Turner et al.,
2001). Smaller extents can lead to the truncation of the largest patch as well as
changes in the shape of many other patches, so metrics of patch shape need to be
used with caution in smaller maps. Furthermore, truncation of the map can lead
to consistent, if not great, overestimation of the number of habitat patches as
connections among adjacent patches near the edge of the map are severed (envision
a large irregularly shaped patch near the edge of a landscape). One key heuristic
is to avoid undertaking a pattern analysis on maps of less than 100 by 100 cells.
Another heuristic is that the map extent should be two to five times greater than
the size of the largest patch on the landscape (O’Neill et al., 1996). Extent does
not necessarily co-vary with grain, but often the use of an extremely broad extent
also results in the use of coarser grain data, so in practice, issues of extent and
grain must often be considered simultaneously.

Not only is map extent important in terms of its absolute area, but also the logic
or rationale used in demarcating landscape boundaries is quite important. In one
multiscale analysis of land cover pattern, the use of arbitrary rectangular boundaries
was compared to the results from landscapes demarcated using watershed boundaries
(Cainetal., 1997). According to the pattern indices, landscapes defined by watershed
boundaries were more homogeneous within, than landscapes defined by arbitrary
rectangles (Cain et al., 1997). This was logically surmised to be related to the
geophysical controls exerted over the region. Quantifying natural levels of variability
in ecosystems (Landres et al., 1999) remains an important challenge for applied and
basic research. Given the clear importance of the watershed as a management unit,
characterizing heterogeneity and quantifying landscape patterns over the scale of
watersheds should be encouraged further as an extent more appropriate than ran-
domly demarcated landscapes that are estranged from the geophysical template on
which the landscape developed. While there will rarely be one prescriptive “right”
scale over which to conduct a pattern analysis, depending on the questions under
consideration, certain scales (grain, MMU, and extents) are likely more appropriate
than others. As such, careful consideration should always be given to these choices
and assumptions.
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Classification Scheme

It is important for any pattern analysis to discuss the origins and rationale used to
create the classification used before that image is used in any pattern analysis. From
the standpoint of end users of remotely sensed imagery, the classification scheme is
among the most important variables to consider to interpret remotely sensed data
and the resulting pattern analysis appropriately. Many end users have little control
over this aspect as it is “predetermined” from the standpoint of most end users who
are not remote sensing scientists. The preprocessing of the data into some predefined
classification scheme affects every metric of pattern that is derived from an image.
The rationale behind the classification scheme is among the important variables most
ignored and not addressed directly in the translation of imagery to the final end user.
Ultimately, problems arise when classification schemes developed for one applica-
tion are used carte blanche by others for a different application.

It is not uncommon for simpler classification schemes (i.e., fewer categories) to
have a higher classification accuracy. Extreme examples might include classifications
depicting only land and water with accuracies exceeding 95% (Benson and MacK-
enzie, 1995), or a habitat versus nonhabitat classification scheme. Because the
proportions of different cover classes can have an impact on all derived metrics, it
is quite conceivable that the impact of classification errors on class proportion and
thus many pattern indices could be reduced through the use of simpler classification
schemes. An important caveat remains that a simpler classification scheme, if created
through the use of a majority rules filter, could induce aggregation errors.

SPATIALLY IMPLICIT VERSUS SPATIALLY EXpLICIT MEASURES OF PATTERN

Spatially explicit measures of pattern yield information about the location of a class
or patch in the landscape. In contrast, spatially implicit, or nonspatial, measures
include such metrics as “percentage cover” or “total area” of a land cover class or
p; (the proportion of the landscape in class i). Such measures give no indication of
where in the landscape such cover classes occur; the importance of this distinction
cannot be overstated. Spatially implicit measures are straightforward to measure and
are often used in the calculation of other metrics. Ecological or management-related
questions that can rely on spatially implicit measures of land cover are simpler than
those that require spatially explicit landscape metrics of configuration (Gergel,
2005). Also, nonspatial measures are the easiest to rectify with the most basic types
of classification accuracy assessments used for remotely sensed imagery.
Landscape pattern indices of configuration are those that yield information on
the location of pixels and land cover classes relative to each other. It is important
to remember that p; is often used directly in the calculation of several metrics
configurations and thus can covertly or overtly govern much of the “behavior” of
these spatially explicit metrics. The simple fact that some metrics appear to be tightly
linked to proportion both through correlations (Neel et al., 2004) and the fact that
p; is often used directly in the formulae for many metrics (Turner et al., 2001) makes
several metrics of configuration potentially problematic for use in assessing frag-
mentation. Correlation coefficients between many metrics and proportion may
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exceed 0.90, and correlations between many metrics and level of aggregation may
exceed 0.80 (Neel et al., 2004).

Interestingly, an important dilemma in empirical field studies of organismal
response to fragmentation is controlling for and distinguishing the impact of frag-
mentation from the independent effects of habitat loss (or proportion) (Fahrig, 2003;
Harrison and Bruna, 1999). This distinction is also important in the realm of water-
shed management that attempts to link land cover change to changes in water quality
(Gergel, 2005). Given the close linkages between proportion and configuration
pattern indices, it is not surprising that dissecting the independent effects of habitat
loss (a nonspatial process) from habitat fragmentation (an inherently spatially
explicit process) has been quite difficult. Such questions are among the core of our
understanding for quantitatively linking pattern and process. Thus, metrics that are
strongly related to aggregation but independent of class area are the most robust and
useful metrics to quantify fragmentation (Neel et al., 2004).

NEIGHBOR RuLEs, PATCH DEFINITION, AND LANDSCAPE CONNECTIVITY

Questions regarding spatial configuration often involve calculating the total number
of patches, mean patch size, or total amount of edge in a landscape. All of these
metrics require information about how individual pixels are located relative to their
“neighbors,” and all require some assumptions on how to determine what a neighbor
actually is. Neighbor rules refer to the definition one uses to determine pixel and
patch connectivity. For example, when two pixels of the same class share a flat edge
and are considered part of the same patch; this is referred to as the four-neighbor
rule. The eight-neighbor rule is used when two pixels of the same class share at
least one corner and are considered connected and part of the same patch. Not
surprisingly, estimates of landscape change can vary drastically depending on the
neighbor rule (Gardner, 2001). No comparisons of landscape fragmentation through
time should ever be reported without explicit mention of the neighbor rule used in
the analysis. For example, a landscape could appear to become more fragmented in
2000 (as compared to 1980) simply because a four-neighbor rule for defining con-
nectivity was used in 2000 and an eight-neighbor rule was used in 1980.

The choice of neighbor rule is often more of an art than a science but should
always be governed by the questions under consideration. Movement patterns of
insects, for example, vary by flying ability (Driscoll and Weir, 2005) and habitat
(Ross et al., 2005; Schooley and Wiens, 2004), whereas movement patterns of plants
may depend on the dispersal agent (e.g., birds, cattle, or seed rain) (Arrieta and
Suarez, 2005). In practice, an eight-neighbor rule is often used to define hydrolog-
ically connected landscapes and to define the connectivity among adjacent wetlands.
Eight-neighbor rules are commonly used when defining adjacencies for good dis-
persers (e.g., birds) or for processes such as fire that can jump as they spread across
a landscape. Connectivity for organisms and processes that disperse poorly (unable
to cross gaps or travel far distances) are often mapped using four-neighbor rules.

Last, any discussion of connectivity should distinguish between structural con-
nectivity and functional connectivity. Structural connectivity (which pixels are adja-
cent to others) is easily quantified, down to several significant digits, using the variety
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of software packages described next. Functional connectivity is in fact more impor-
tant and more relevant to management and conservation. Functional connectivity
may be dynamic and variable for any process or organism and is much more difficult
to quantify and map. For example, the gap-crossing ability of flying insects may
render patches several pixels away as functionally “connected” when individuals are
able to traverse 100 m of generally inhospitable habitat to reach the next suitable
patch of habitat. The spread of fire might also be looked at in this context as the
ability to “jump” from one fire-prone area to the next and is influenced by the
direction and slope of spread (e.g., up- or downslope) and may change due to
changing wind speed and direction. Understanding these mechanisms that influence
how structural connectivity translates into functional connectivity for the spread of
insects, pathogens, fire, and the like, is key to translating static landscape patterns
into the dynamic landscape processes that are ultimately of interest.

Tools ofF THE TRADE

Once the above issues regarding the input data set and goals of the analysis and
questions are formalized, there exist a variety of software packages to perform the
pattern analysis. Among the most widely used and known is Fragstats (McGarigal
et al., 2002), originally released to the public in 1995 as part of research conducted
by the U.S. Department of Agriculture Forest Service and has since become the
industry standard. This software exemplifies not only the enormous utility that can
be derived from such software, but also can easily lead the uninformed user to make
some beginner’s mistakes. Some of these common mistakes include:

1. Not providing a clear rationale or theoretical reason for why the metrics
were chosen (Gustafson, 1998). At a minimum, this involves a hypothesis
for the expected direction of change in a metric. Ideally, this involves a
likely explanation for the ecological reasons and mechanisms causing
this change.

2. Including results from too many metrics. Many metrics are highly corre-
lated, so the presentation of more than a defined small set is rarely
warranted. Techniques such as principal components analysis can help
reduce the redundancy of metrics.

3. Not considering and matching the scale of analysis to the scale of the
question at hand (Gustafson, 1998). If possible, one should try to conduct
the analysis at different scales.

The importance of these points cannot be emphasized enough. Neglect of these
points has substantially limited our ability to link pattern metrics with process, the
ultimate goal of pattern analysis. In addition to Fragstats, other freely available
software has been developed, and these packages vary in their utility for research
versus direct management applications (Table 7.2). Along with conducting pattern
analyses on an image, several programs include the ability to create simulated maps,
the importance of which is discussed in the Real and Artificial Landscapes section.
Furthermore, at http://www.csiss.org/ clearinghouse/ a wide variety of additional
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TABLE 7.2

Additional Freely Available Software Packages for Calculation of Landscape
Metrics or Landscape Pattern Indices (LPIs)

Software

Apack 2.17

ClaraT

Leap Il

Rule

Simmap 2.0

Description

Similar in many respects to Fragstats but generally faster. The
program originated as a linkage to the Landis forest disturbance
model. Apack has since been redesigned by others with a specific
emphasis on handling thousands of larger data sets in a
computationally efficient manner and can now take advantage
of multiple processors. The software requires an Erdas GIS or
ASCII text format for input files.

Emphasizes the diversity of ways to calculate and analyze
fractals. The software can be used to explore the concepts of
self-similarity, random growth processes, and stochastic
renormalization. Exercises have been developed for ClaraT that
examine self-affine functions and linkages to time series analysis
(Milne et al. 1999).

The Landscape Ecological Analysis Package was designed for
management-related purposes, such as the monitoring of spatial
patterns through time in response to differing management and
policy options. The program was designed for use with spatial
fire regime simulators and interfaces with Fragstats, ArcView,
Arc/Info, Erdas are in various stages of development.

Calculates landscape metrics but was originally designed for the
creation of simulated, highly controllable replicated maps,
primarily for research purposes. Fragmentation and proportion
can be varied independently using two simple parameters. The
software includes area-weighted metrics and the option for
lacunarity analysis, but does not overwhelm the user with an
enormous number of pattern indices. Educational materials have
been developed to assist users (Gardner 1999, 2001).

Runs in a PC Windows environment and computes several
landscape pattern indices related to edges, number, size, and
shape of the patterns and others. Raster output can be saved as
images easily importable to other programs. The program also
generates realistic simulated maps using algorithms different
from Rule. The relative abundance of cover classes and
fragmentation can be varied independently and systematically
controlled. Simulations are generally rapid, only a few seconds
for an 800 x 800 map.

Reference

Mladenoff and
DeZonia (1999)

Milne et al. (1999)

Perera et al. (1997)

Gardner (1999)

Saura and
Martinez-Millan
(2000)
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programs may be found. Selection of an appropriate program can be determined by
the specific concern, with discipline-specific programs for spatial questions related
to crime hot spots, mining, epidemiology, and diverse social science applications.

There are also extensions created to work within a GIS platform to conduct
spatial analyses. The major (nontrivial) benefit of such extensions is that they avoid
the creation and export of ASCII grids or text files from the GIS for import into a
separate self-contained program. This is important as files are often huge and
unwieldy. This can become quite problematic when multiple landscapes are ana-
lyzed, particularly if one does not have access to automated code for repeated
analyses of many maps. Researchers in such a situation may particularly benefit
from programs such as the Patch Analyst ArcView Extension (Rempel and Carr,
2003), or r.le (Baker and Cai, 1992), which is essentially a series of commands
written for GRASS GIS (open source GIS software).

NEw CONCEPTS OF FRAGMENTATION

Traditional ways of viewing and measuring habitat fragmentation have largely been
influenced by the Island Biogeography perspective (MacArthur and Wilson, 1967),
in which habitat fragments are seen as islands within an inhospitable matrix. The
pioneer of plant ecology John Curtis’s classic map of landscape change through time
in Cadiz Township, Wisconsin (Figure 7.1), represents this quintessential view of
habitat fragmentation from this island perspective. As this perspective has been so
influential in shaping conservationists’ view of reserves and reserve design (Dia-
mond, 1976), it is not surprising that many of the most widely used metrics for
assessing habitat fragmentation include the numbers of patches and mean patch size,
as the relevance of such metrics for a “Curtis-style” fragmented landscape is fairly
obvious (Figure 7.1). The aforementioned problem of dissecting the independent
effects of nonspatial habitat loss from spatially explicit habitat fragmentation is also
evident from such a map.

However, in other parts of the world, habitat fragmentation is occurring at
different rates and through different causes, leading to a variety of fragmented
landscapes that do not fit this island model. Several types and phases of habitat
fragmentation have been identified (Forman, 1995; Jaeger, 2000; Mclntyre and
Hobbs, 1999). One specific typology of landscape fragmentation introduced the idea
of variegated landscapes (Mclntyre and Hobbs, 1999) that occur along a continuum
from intact to variegated, fragmented, and relictual landscapes (Figure 7.2a). The
concept of a variegated landscape may be more relevant in largely intact landscapes,
typical of many regions of Canada, for example. Deforestation is among the most
widely quantified of the different land cover conversion processes. Thus, it has
become clear that land cover conversion is often not uniform or random but tends
to be clustered (Lepers et al., 2005), often in highly productive areas and often at
the edge of forested areas and along roads. Another useful categorization therefore
includes four main types of fragmentation that occur as a result of different spatial
processes: linear, insular, diffuse, and massive fragmentation (Jeanjean et al., 1995).
Figure 7.2b shows additional phases of fragmentation that have been identified,
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1902 1950

FIGURE 7.1 Classic example of habitat fragmentation from Cadiz Township, Wisconsin, by
John Curtis as a result of European settlement. The dark shaded areas represent intact habitat,
with clear patterns of habitat fragmentation of remaining patches from 1831 to 1882 to 1902
to 1950. (Originally from Curtis, J., in W. L. Thomas (Ed.), Man’s Role in Changing the Face
of the Earth, University of Chicago Press, Chicago, 1956.)

including perforation and incision by linear agents such as roads, as well as dissec-
tion, dissipation, shrinkage, and attrition (Forman, 1995; Jaeger, 2000) (Figure 7.2b).

Rather than debate specific terminology of the classifications, note several points
of interest (Figure 7.2). First, note the very different dominant patterns occurring in
early versus later stages of the process, as well as the diversity of causes (e.g., linear
vs. more diffuse). It is likely that not all metrics behave consistently across all phases
of fragmentation or are useful in all types of landscapes. Thus, it is important to
distinguish among landscape pattern indices that are useful in the early versus later
stages of fragmentation, as well as those more or less sensitive to linear drivers of
fragmentation. The basic landscape pattern indices of use in an island-type landscape
(e.g., number of patches, mean patch size) might not always be of use in other
situations. “Perforated” landscapes might respond particularly well to different met-
rics of fragmentation, such as lacunarity, that attempt to address the “holiness” of
landscapes. These distinctions are quite relevant to consider depending on whether
one’s focal class of interest is widely dissected across the landscape or makes up
the background matrix of the landscape. As important as determining the correct
metric to describe the structural connectivity of a landscape, it ultimately is more
important to appropriately represent the functional connectivity of a landscape
throughout the process of fragmentation of the landscape as the point at which a
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FIGURE 7.2 Classification of landscapes according to various stages of fragmentation. Panel
A shows a scheme proposed by Mclintyre and Hobbs (1999) that includes four general
categories based on the degree of fragmentation. Panel B presents the phases of the fragmen-
tation process (from Jaeger, 2000, and modified and extended after Forman, 1995, p. 407,
Figure 12.1). Note the initial and ending patterns are similar to the original patterns in the
classic Curtis example, but the intermediary causes and patterns are quite distinct: the first
phases of fragmentation are driven largely by linear disturbances as well as the perforated
landscape patterns.

landscape becomes functionally fragmented varies greatly by process or organism
(Neel et al., 2004).
ADDITIONAL MEASURES OF FRAGMENTATION

New landscape metrics are under continuous development. This is driven in part by
a need to better quantify functional connectivity of landscapes (as some metrics are
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better correlated with dispersal success Schumaker, 1996). Due to the extreme impor-
tance of the measuring forest fragmentation (and its inverse, habitat connectivity) and
given that a variety of new metrics have been proposed to improve on traditional
metrics of connectivity, several of the recent new ideas in measuring habitat fragmen-
tation are discussed next. This discussion includes several indices not routinely cal-
culated by all software packages (Table 7.1). As a result, they may not be as familiar
in the literature. This list is certainly not exhaustive, however, discussed are several
new metrics that may be particularly suited to address questions previously unanswer-
able by the “standard metrics.” This idea is revisited at the end of this chapter within
the context of new approaches and new metrics needed for fine-scale pattern analysis.

Three recent LPIs, landscape division, effective mesh size, and splitting index,
have been devised by Jaeger (2000) in an attempt to better link fragmentation indices
to ecological processes of interest. Very loosely, these three metrics are meant to
relate to the likelihood of two organisms finding each other (or not) on a given
landscape. Landscape division is the probability that two random locations are both
situated in the cover class of interest. While all three are closely related, they are
different in their interpretation and behavior. In a comparison of these three newer
metrics to a suite of more commonly used LPIs, many traditional LPIs were deemed
useful for distinguishing only certain phases of fragmentation but not others (Jaeger,
2000), whereas, the new proposed metrics were useful for all phases of fragmentation.

Furthermore, a comparison that involved degree of landscape division, splitting
index, effective mesh size (as well as two road density measures), found that only
these three new metrics responded consistently to increasing fragmentation. Metrics
such as number of patches and average patch size were inconsistent (Jaeger, 2000)
and should be replaced by effective mesh size. Effective mesh size is also recom-
mended when one must compare among landscapes of differing extent. As a result
of this work, useful criteria for evaluating the utility of fragmentation metrics have
been proposed and include intuitive interpretation, low sensitivity to extremely small
patches, monotonous changes to different stage of fragmentation, and mathematical
simplicity (Jaeger, 2000).

Lacunarity (Mandelbrot, 1983) is a measure of texture and has been used within
the context of quantifying landscape-level patterns (Plotnick et al., 1993). Lacunarity
refers to the “holiness” or “gappiness” of a landscape. Lower lacunarity occurs for
patterns that contain similar gap sizes, whereas higher lacunarity occurs in landscapes
with a wider range of gap sizes (Plotnick et al., 1993). Unlike measures such as
contagion (O’Neill et al., 1988), which is merely a fine-scale measure of texture,
lacunarity allows the examination of multiscale texture (Plotnick et al., 1993). This
is important as fragmentation can occur at finer as well as broader scales. Lacunarity
is the result of a moving window (or gliding box) analysis described further in the
work of Plotnick et al. (1993) and Gardner (1999). A lacunarity analysis can provide
information about the overall portion of the map occupied by the cover class of interest,
the contagion at a given scale, the scale at which map patterns are random, and the
scales over which the landscape exhibits self-similar patterns (Plotnick et al., 1993).

It is important to remember that lacunarity is a scale-dependent measure; there-
fore, both high and low values can be observed on the same landscape when
measured at different scales. As such, a measurement of lacunarity at one scale, or
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the use of one single value, is generally not extremely useful. Instead, the power of
lacunarity is the information provided by measurements made at different scales
(Plotnick et al., 1993). Furthermore, in contrast to many other neighborhood analysis
techniques, measurements made at multiple scales are not sensitive to map edges.
However, lower lacunarity values (as the box size increases) are likely to be detected
(Plotnick et al., 1993). Lacunarity is also reliable for use on sparse maps, which
may make it useful to consider further in fragmentation studies. This metric deserves
more examination for variegated landscape patterns and for perforating agents of
landscape change, as in Figure 7.2b.

Interestingly, the Matheron index (Matheron, 1970), essentially a core/perimeter
ratio, deserves mention as it has been used by the remote sensing community for
quite some time but has not been used at all in the landscape ecology literature.
Some interesting work showing the behavior of the Matheron index (Matheron,
1970) is reproduced here in Figure 7.3 (Achard et al., 2001). In this case, the index
was calculated for every 9 x 9 pixel block on a coarse spatial resolution map (AVHRR
image). Note that the range of fragmentation is greatest at 50% forest cover. Thus,
the behavior of fragmentation indices must be evaluated within the context of the
remaining proportion of habitat on the landscape in case of mathematical artifacts
related to correlations with p;, as well as due to the diversity of conceptualizations
of the phases of fragmentation previously discussed.
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FIGURE 7.3 Relationship between percentage cover of forest versus one measure of forest
fragmentation (Achard et al., 2001). The amount of fragmentation varies with proportion of
forests, as does the variability in fragmentation values. Shown here is the Matheron index
(Matheron, 1970) of fragmentation.
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EpGes AND ECOTONES

An ecotone is an area where the majority of the variables (species or environmental
factors) show the highest rates of change (Burrough, 1986). Some have further
distinguished an edge as referring to only sharper changes, while using the term
boundary to refer to both sharp and more gradual changes (Fagan et al., 2003).
Both sharp edges and gradual boundaries can influence the exchange of materials
or indicate that a flux of material or energy is occurring in an area. Edges are quite
important ecologically given the increased diversity, disturbance, microclimate
conditions, exotic species, and other effects often observed at edges. Defining edges
is also critical to defining patches and thus defining our view of habitat fragmen-
tation. In most metric calculation packages, edge can be quantified in a variety of
ways using different specific algorithms (e.g., Rule vs. Fragstats Algorithms) and
reported in different units, such as the length of linear edge (kilometers) or total
area of edge habitat (hectares).

Edges are also, unfortunately, among the most misclassified portions of a land-
scape image. Classification errors can be due to a variety of factors, but mixed pixels
(where the field of view includes more than one cover type) (Hlavka and Livingston,
1997) are particularly problematic. Edge errors become more important as the
landscape becomes more fragmented with many edges between cover classes. This
is particularly ironic as such landscapes are precisely those landscapes which a
fragmentation analysis is of most interest to managers, conservation biologists, etc.
One option uses “area-weighted” and “core area” metrics. Such metrics help mitigate
edge problem as they essentially “ignore” the portions of the landscape where
classification errors are highest. The legitimacy and implications of this approach,
which ignores the “edgey” areas of the landscape that are often of most interest in
a fragmentation analysis, are troubling and deserving of more attention. Thus, when
characterizing forest fragmentation, edge-related forest fragmentation measures
might be particularly problematic. As such, special consideration should be paid to
the study of edges through all phases of a pattern analysis research, from classifi-
cation to specifications made when using Fragstats.

Many of the advancements in edge detection have occurred outside the realm
of the standard software packages for pattern analysis. One group of edge detection
algorithms requires evenly spaced data, thus rendering them useful for remotely
sensed imagery, and is based on wombling (Womble, 1951). Briefly, on a grid, a
wombling algorithm essentially compares a point to its four nearest neighbors by
calculating the first partial derivative of a variable in the four cardinal directions
(Fortin, 1994). A wombling “surface” is formed that describes the magnitude of the
rates of change observed for given variables; the surface is level when the rate of
change is zero (or very low) and inclined when the variable shows a higher rate of
change. A boundary or ecotone is defined as those areas where wombling values
are high (above some chosen threshold) (Fortin, 1994). Values can also be averaged
among several variables to obtain a wombling surface for a combination of variables.
Such techniques, however, will almost always detect a gradient of some sort. There-
fore, significance tests are essential in determining if the observed rates of change
are different from what might be observed at random. Interestingly, testing for
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significance using a simple null random pattern will lead to a conservative test
compared to the use of a null pattern with spatial autocorrelation.

Boundaries detected for different types of vegetation structure in deciduous
forest in Quebec using wombling yielded interesting results (Fortin, 1997). Delin-
eated boundaries were compared using trees only, shrubs only, as well as trees and
shrubs combined and involved comparisons using densities, percentage cover, and
presence/absence data (Fortin, 1997). Overlap among boundaries was determined
using an overlap statistic: O,. In many cases, similar boundaries were found regard-
less of whether density, percentage cover, or presence/absence was used. One useful
aspect of this work for remote sensing is that boundaries detected using tree per-
centage cover corresponded well to boundaries defined using densities, possibly
fortuitous for ground validation, for which swiftly and easily collected measurements
are desirable (Fortin, 1997). The generality of this, especially when applied to new
high spatial resolution imagery sources, would be interesting to test.

IMPORTANT CONSIDERATIONS FOR PATTERN
ANALYSIS OF FOREST DISTURBANCE

AvoiD REDUNDANT METRICS

While a seemingly amazing array of landscape metrics is possible to calculate, it
is clear that many are quite highly correlated and thus redundant (Griffith et al.,
2000; Neel et al., 2004; Riitters et al., 1995). As such, the number of metrics
reported in any study will generally need to be reduced substantively from the
entire set output from the software. The number of metrics can be reduced through
the careful selection of a small set of metrics clearly related to a specific hypothesis
(Langford et al., 2006) or reduced in number via principal components analysis,
factor analysis, or other multivariate reduction techniques (Cain et al., 1997; Car-
dille et al., 2005; Cumming and Vernier, 2002; Imbernon and Branthomme, 2001;
Riitters et al., 1995).

There have been several indications that there may be four or five distinct dimen-
sions that can measured on a landscape using landscape metrics (Cain et al., 1997;
Cumming and Vernier, 2002; Li and Reynolds, 1995; Riitters et al., 1995). These
general groupings may even be robust to changes in grain (Griffith et al., 2000). One
factor analysis (Cain et al., 1997) found fairly consistent relationships across different
data sets. Primarily, the “texture factor” was the most important in all data sets and
could explain the majority of variance regardless of spatial resolution and other factors
(Cain et al., 1997). This analysis suggested four general groupings for metrics. The
first group of metrics included texture variables such as land cover dominance and
contagion. The second group included patch shape and compaction, and this grouping
was not particularly robust. A third group included fractal estimators of perimeter
complexity, and the fourth group included only the number of classes.

Even fewer groupings of LPIs may be necessary (Neel et al., 2004). A thorough
analysis of Fragstats output calculated from a variety of simulated replicate land-
scapes Yielded three general behavioral groupings of metrics: those that are closely
correlated with proportion or areal measures (or compaosition), a second group
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closely tied to the spatial autocorrelation (or configuration), and a last group with
less-predictable behavior (including unstable, nonlinear, threshold responses) in
response to proportion and autocorrelation (Neel et al., 2004). The second class of
metrics, those that respond to aggregation independent of proportion, are among the
best suited for assessing habitat fragmentation. A detailed table with class-level LPIs,
associated behavioral groupings, and correlations with proportion and autocorrela-
tion is presented in the work of Neel et al. (2004). Examination of this table by all
readers is highly recommended. Furthermore, the nonlinear behavior of many met-
rics suggests linear analytical techniques may be inappropriate (Neel et al., 2004).
Unless there is an ecological or geophysical reason to calculate many metrics, there
is little need for it (Cain et al., 1997). Thus, it is generally appropriate to examine
the correlations among any metrics one might consider using and then only report
a limited number of metrics.

CoNTEXT NEEDED WHEN QUANTIFYING DISTURBANCE PATTERNS

Characterizing fragmentation and natural disturbance regimes invariably requires
some measure of central tendency to describe a situation. However, in many cases
the distribution of pattern metrics is nonnormal, possibly log-normal, rendering mean
values problematic for adequately summarizing pattern. Examining the distribution
of patch sizes will generally be much more illuminating than only examining the
mean patch size. For example, mean fire size, as determined by a “mean patch size”
metric for burned areas or the average size of patches estimated by Fragstats, might
not actually ever occur on a landscape. Instead, median values or, preferably, a
frequency distribution, are better suited for describing actual patterns. Furthermore,
the sensitivity of any measure of central tendency to the characteristics of the input
data (such as grain and extent) should also be addressed explicitly before patterns
can be accurately quantified. However, few researchers have the time or capability
to fully address patterns in such detail in every study.

Furthermore, when examining the distribution of patch sizes, small patches can
be quite important to quantify as in some cases the distribution of patch sizes is
dominated by many very small patches. For example, one study examined the
statistical distribution of patch sizes for burn scars in tropical savannah using Landsat
Multi-Spectral Scanner (MSS) and ponds in the Arctic using ERS-1 synthetic aper-
ture radar images (Hlavka and Livingston, 1997), two very fragmented cover types.
They determined that 24,776 of 27,698 ponds were less than 0.0028 km? and 472
of 477 total burn scars were less than 8 km?2. Last, their comparison of the distribution
of burn scars between AVHRR and Landsat revealed three types of distortion with
the coarse spatial resolution imagery (Hlavka and Livingston, 1997). The study
stressed that while patches smaller than a pixel cannot be detected, patches of equal
size to a pixel might likely be detected in neighboring pixels (Hlavka and Livingston,
1997). Clearly, the possibility of small patches approaching the size of the MMU
or grain size of the image must be carefully considered. Other features of the map
itself will greatly influence the perceived patch size distribution as truncation of the
map effectively limits the size of the largest patch, while the resolution and MMU
will have an impact on the smallest patch size visible.
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Patch size distributions of fragmented cover classes can be modeled with theo-
retical distributions (Hlavka and Livingston, 1997), and these distributions are not
necessarily normally distributed. An analysis of patch size distributions that com-
pared the fit of a Pareto (power) distribution and an exponential distribution resulted
in r2 values ranging from 79 to 99% for these distributions (Hlavka and Livingston,
1997). Comparing mean values of patch sizes, particularly from distributions that
are not the same, is potentially extremely problematic. This could be a problem for
other LPIs as well. For example, some results suggest that mean shape index in
particular should not be used when comparing maps with different patch size dis-
tributions (Saura, 2002).

Diverse tools are needed to adequately describe the natural and unnatural range
of variability in landscape pattern and provide the context for the results (Cumming
and Vernier, 2002; Cushman and Wallin, 2000; Kemper et al., 2000; Staus et al.,
2002; Tinker et al., 2003). In addition to empirical data from individual studies
attempting to characterize natural and anthropogenic sources of variability in land-
scape disturbance, two sources of information are essential if landscape ecologists
and others want truly to understand the broader context in which their particular
landscape patterns reside. Next, a brief overview of these two additional approaches
is provided. These approaches can aid specifically in the aforementioned problems
of varying patch size distributions among different landscapes, interactions between
proportion and arrangement, and the impact of grain, extent, and MMU.

WHY THE INTERPLAY BETWEEN PATTERN ANALYSIS IN “REAL” AND
“ ARTIFICIAL” LANDSCAPES Is ESSENTIAL

While diverse definitions of spatial heterogeneity abound, there is generally no
agreed-on quantitative definition of landscape heterogeneity. As a result, teasing out
variability in pattern caused by natural versus anthropogenic forces still remains
problematic (as discussed in Chapter 8, this volume). Ultimately, most pattern
analyses fundamentally ask questions about the causes and consequences of spatial
heterogeneity. An important goal of pattern analysis should be to quantify landscape
patterns rigorously to determine which landscapes are outside or approaching the
limits of their natural range of variability. Certainly, a more quantitative definition
of landscape heterogeneity might be useful for comparing among different land-
scapes and asking: Which landscapes are more heterogeneous than others? How did
this heterogeneity arise? What portion of the heterogeneity is due to human causes
versus natural sources of variability?

Simply comparing among a few landscapes or contrasting one landscape over
multiple time periods might indeed detect differences, but whether the changes
observed are ecologically or statistically significant is generally unknowable with
small sample sizes. Meaningful interpretation of the actual relevance of an LPI is
difficult without some context for its actual range and variability in the real world.
An obvious example might be examining 20 years of landscape change using the
available archive of Landsat images in a region where the dominant organism lives
well beyond 20 years. This might not provide the entire view of natural levels of
variation across such a landscape.
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Thus, new ways of quantifying the range in metrics that move beyond comparing
two or three landscapes are needed. Such methods would use a multitude of repli-
cated landscapes that span the possible range of variation due to natural sources as
well as the possible range of variation due to anthropogenic causes. The first of
these databases, called META-LAND, has been developed in the United States
(Cardille et al., 2005), originating in the agriculture-dominated midwestern regions
of the United States but rapidly growing to include new areas, including Canada,
starting with British Columbia (Gergel et al., in preparation). This system offers the
unprecedented ability to select from the full range of natural variability actually seen
in landscapes. With such databases, pattern analysis of one landscape through time
will have the necessary context to determine if the changes actually seen are out of
the ordinary. Furthermore, metric behavior on “real landscapes” cannot be under-
stood until there is also an understanding of how landscape metrics behave on
artificially created maps with only controlled sources of variability.

NEUTRAL LANDSCAPE MODELS

An essential key to understanding the behavior of landscape metrics is to understand
and interpret their behavior in highly controlled situations on landscapes that have
been designed (and replicated) to vary in explicit ways, an experimental design largely
unobtainable in the field (Langford et al., 2006; Neel et al., 2004; Saura and Martinez-
Millan, 2000). These simulated maps have been termed neutral landscape models
(NLMs) (Gardner et al., 1987) and spatial stochastic models (Fortin et al., 2003).

Such simulated maps are an important complement to the use of classified
imagery for evaluating LPIs for a variety of important reasons. So-called real land-
scapes — maps and classified remotely sensed imagery — have errors. Some of
these errors are unknown, unquantifiable, and biased. Patterns seen in real landscapes
may be biased due to natural sources of variability or postprocessing and data
collection methods. For example, anisotropy can have an impact on the value and
range of variability seen in LPIs, and one may not even be aware of the magnitude
and direction of such a bias in an image. Creating artificial landscapes enables control
of such sources of bias, creating highly controlled replicate landscapes that are
difficult to find in the real world. NLMs enable one to ask many of the questions
posed in this chapter while controlling for the sources of variability that are not of
interest and explicitly manipulating the sources of variability that are of interest
(e.g., p; and aggregation; see Figure 7.4). Neutral landscape models may also be
quite useful for the above-mentioned “chicken-and-egg” problem by which the
amount of cover class affects the resulting fragmentation metric derived from a
landscape, and the measured area of a land cover class can be impacted by the
fragmentation patterns seen on the ground.

Major advances in realism have been made in the latest generation of neutral
landscape models (Table 7.2) using fractal midpoint displacement algorithms (Gard-
ner et al., 1987) and the modified random clusters method (Saura and Martinez-
Millan, 2000). The realism of artificial maps is improving such that, in a recent
survey involving over 100 map experts, the respondents were unable to discern
synthetic maps from actual maps (Hargrove et al., 2002). Thus, quite realistic,
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Simulated Landscapes (Neutral Landscapes)

20%
Habitat

40%
Habitat

60%
W Habitat

Fragmented Clumped

FIGURE 7.4 Several examples of simulated neutral landscapes showing the range of habitat
proportions as well as fragmentation that can be systematically manipulated. Both can be
varied independently in programs such as Rule (Gardner, 1999) and SimMap (Saura and
Martinez-Millan, 2000). The ability to distinguish the effects of habitat loss independently
from the changes due to habitat fragmentation is a crucial challenge in pattern analysis and
can be aided by the use of simulated maps. These landscapes were originally used in the
work of Langford et al., 2006.

multiple-category maps are possible with independently controllable categories such
as clumpiness and proportion (Gardner, 1999; Remmel and Csillag, 2003) as both
have an impact on the expected values and the variance in LPIs on simulated maps
(Gardner, 1999). Landscapes with linear, noodlelike features and nonstationary
anisotropy (Gardner, 1999; Hargrove et al., 2002) have also been created. To the
author’s knowledge, all of the current options for simulated maps (and all reported
data on their behavior) are based solely on rectangular landscapes, the boundaries
of which bear little resemblance to the shapes of natural physiographic, ecoregional,
watershed-level, or geomorphic boundaries often seen in actual landscapes, aside
from agricultural fields.
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NLMs have been fundamental to the development of a vast array of theory in
landscape ecology (With and King, 1997). While simulated maps may seem only
useful in the realm of theory and of little value for management and on-the-ground
decision making, it has become apparent that to generate a full range of behaviors
from landscapes, improvements in NLMs are essential. For example, if the behavior
of a new (or existing) landscape pattern index has only been evaluated in one location,
its behavior remains largely unknown. Further, if the expected value and variance
of a metric is not known, there is really no basis on which to decide what constitutes
significant landscape change (or significant difference) (Csillag and Boots, 2005;
Remmel and Csillag, 2003). Instead, an LPI should be evaluated relative to some
underlying statistical distribution of the LPI (Fortin et al., 2003), which is difficult
to quantify when N = 1 or N = 2 landscapes. Thus, simulating the probability
distribution of an LPI, ideally over a range of proportions and magnitudes of auto-
correlation (Fortin et al., 2003), is an essential part of devising a rigorous statistical
test to detect statistically significant landscape change. In general, the statistical
distribution over which most metrics occur is not well understood except in the case
of random landscapes. Despite this, LPI values are often compared among landscapes
without reference to any underlying distribution.

The goal of creating better spatial models for null hypothesis testing is not lost
on other disciplines (Goovaerts and Jacquez, 2005). Efforts are under way from
organizations such as the U.S. National Cancer Institute to fund research into neutral
models for use in pattern recognition for health and epidemiological purposes.
Interestingly, this was motivated in part by a need to address the problems and bias
toward false positives that can be created by unrealistic and oversimplified null
hypotheses such as complete spatial randomness. It is likely that expansion of new
and improved neutral spatial model software will continue as it is explored in
disciplines beyond that of landscape ecology.

In summary, it is clear that comparing any two LPIs devoid of any context for
the probability distribution from which they arise is nonilluminating and may border
on nonsensical. However, it is also important to point out that there are benefits and
disadvantages to comparing the value of an LPI to a probability distribution derived
from images of actual landscapes (the real world) versus a probability distribution
derived from simulated maps. Probability distributions derived from real maps are
fraught with unknown and unquantifiable errors and biases. Simulated maps benefit
from the ability to span the entire theoretical (and likely wider) range of possible
values consistently for a given LPI through systematic control and replication.
However, the ecological significance of an LPI value that falls within or outside the
theoretical distribution may be harder to determine as the simulated probability
distribution may span a much greater range of variability than actually observed for
an LPI on real landscapes. Thus, statistically significant and ecologically significant
differences in LPIs must both be addressed.

CHALLENGES AND OPPORTUNITIES

A variety of future challenges faces the users and creators of spatial data used in
pattern analysis. These challenges span the range of purely conceptual to entirely
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technical, as well as challenges that will involve both. Due to the earlier assertion
that changes in the discipline of remote sensing science have been the driving force
behind the development of landscape pattern analysis, the focus here is on issues
that appear promising for active collaboration between the two disciplines and that
yield practical benefits to those using pattern analysis for decision making.

ACCURACY ASSESSMENT OF LANDSCAPE METRICS

As any map typically contains error, any analysis derived from that map will also
contain errors. There are diverse potential causes of errors in an image that can lead
to over- or underestimation of the areal amounts of different cover classes (Achard
et al., 2001). These causes of errors include data compositing procedures, data
resampling or rescaling, classification techniques, training sites, and number of
classes used (Wulder, Boots, et al., 2004). For example, errors as high as 40-50%
have been reported for areal estimates of burns (Setzer and Pereira, 1991). One of
the primary ways in which errors in a map might be related to errors in landscape
metrics is through inaccuracies in the classification. However, research on the accu-
racy of landscape metrics is generally sparse (Langford et al., 2006).

Early work suggested little need for concern regarding the impact of classifica-
tion accuracy upon resulting landscape metrics. Wickham et al. (1997) suggested
that if differences in land cover composition were roughly 5% greater than the
misclassification rate, it could be assumed that the calculated differences between
LPIs were not due to misclassification. Recent work has reported mixed conclusions
about the severity of the issue (Brown et al., 2000; Hess and Bay, 1997; Shao et al.,
2001; Wickham et al., 1997). Of the limited number of studies that have explicitly
addressed the impact of classification error on propagation of errors to metrics, the
ability to generalize the findings remains limited.

Furthermore, caution should be exercised as studies based on “real maps” have
inherent biases and trends. Often these maps have also been subjected to a MMU
correction as well. Thus, extrapolation of any quantitative prediction of metric error
from these studies is problematic. The results only apply to a given range of maps
and structural types of landscapes as examined in the studies. Issues related to map
accuracy and the relationship to errors in landscape metrics is particularly well-
suited to the aforementioned combined approaches of “bulk” pattern analysis and
neutral landscape models that are necessary to have large sample sizes of replicate
landscapes that truly span the diversity of landscape proportions and structure. As
a consequence, these same studies could be built upon by spanning a greater range
of proportions, spatial autocorrelation, and fragmentation.

Intuitively, it may be thought that a more accurately classified map would result
in more accurate landscape metrics. In one of the more systematic attempts to
compare map classification accuracy and landscape metrics accuracy using thou-
sands of simulated maps, replicated with systematically controlled proportions and
aggregation of land cover), it was found that percentage error of the metrics did not
relate well to the percentage classification error on the same map (Langford et al.,
2006). The study focused on the landscape metrics routinely used to quantify habitat
fragmentation, and the impact on other metrics remains to be examined.
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As mentioned, errors in the areal extent of different cover classes on a classified
image are often greater as the landscape becomes more fragmented with many edges
between cover classes (Roesch et al., 1995). Pattern (as measured using spatial
autocorrelation) was seen early in the remote sensing literature as having an impact
on accuracy assessment (Congalton, 1988). This is particularly troubling as it is
precisely in such fragmented landscapes that one is most likely interested in con-
ducting a pattern analysis for management or conservation purposes.

The problem of inaccuracies in landscape metrics when measured across mul-
tiple scales might also be exacerbated by the fragmented structure of landscapes.
For example, several studies have examined the correlations between fine-scale data
sources and coarser scale data sets (Jeanjean and Achard, 1997). Interestingly, the
correlations between deforestation measured using Landsat TM and coarser-scale
AVHRR data sources were different depending on the degree of fragmentation
(Jeanjean and Achard, 1997). In landscapes with high levels of fragmentation r? =
0.36 and areas with lower levels of fragmentation yielded r? values of 0.85. Thus,
the discrepancy (or errors) among the two data sets were clearly of greater concern
in the fragmented situation, whereas agreement among the different data sources
(thus corroborating the accuracy of both) was higher when the landscape was largely
intact. Such errors in the areal measures of cover classes and the extent to which
these errors translate into metric errors remain to be determined.

The recurring (and somewhat circular) chicken-and-egg problem between pro-
portional areal measures and fragmentation measures is troubling. It is clear that the
proportion of the landscape occupied by a cover class has an enormous impact on
any resulting configuration metrics that may be calculated for that landscape. How-
ever, the original landscape structure, particularly when fragmented, can have an
impact on the resulting areal proportion measures on an image. Neutral landscape
models can help with this problem through an attempt to control for these factors
separately or a priori, but it is clear this circularity must be addressed. Because we
are aware that classification errors are generally higher at patch edges, core area
metrics may be useful in some instances (where the patch edges are ignored and
only the core area of the patches are used by Fragstats to calculate metrics). Given
the importance of edges to a variety of management and conservation concerns (e.g.,
negative edge effects), this solution may not be feasible for all applications.

Accuracy assessment of imagery is an important research issue and practical
challenge for both map users and producers. While specifics are routinely debated,
there nonetheless exists an entire body of literature, accepted methods, jargon, and
tools associated with accuracy assessment (Foody, 2002). There exists no such
parallel for accuracy assessment of landscape metrics. In addition, much of the
traditional, standardized ways of addressing accuracy assessment of imagery are
generally nonspatial and of limited value for directly assessing the validity of any
pattern analysis. User and producer errors do not give any indication of where in
the landscape errors exist. In addition, reporting overall accuracies of land cover
classifications (Cain et al., 1997) rather than per class estimates, is problematic,
especially for rare cover classes, as the low number of reference points renders the
confusion matrix problematic (Langford et al., 1996). In one example, “background”
matrix cells had both producer’s and user’s accuracy exceeding 99%, while the more
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rare fire class had producer’s and user’s accuracies of just over 12% and 7%,
respectively, with a resulting overall accuracy exceeding 99%. This is particularly
problematic when the rare cover types (e.g., remaining habitat, small patchy distur-
bances) are those classes subject to a pattern analysis.

Few studies have examined errors in landscape metrics, and each has resulted
in different conclusions. From the few studies that do exist, there is limited ability
to generalize to the broad range of applications undertaken with pattern analysis,
much less to make any quantitative predictions regarding the nature or magnitude
of errors in landscape metrics that may be a result of errors in base maps. The limited
results that exist, however, suggest that much more research, and more systematic
research, is needed to answer this question (Langford et al., 2006). This oversight
in research, the lack of our ability to assess the direction and magnitude of errors
in landscape metrics, could have potentially serious consequences for research,
management, and policy as there is likely error of unknown magnitude in the results
of every pattern analysis ever conducted (Langford et al., 2006). Furthermore, our
assessments of natural levels of variability in landscape pattern could be unduly
influenced by the variability in metrics simply caused by error. This will inhibit our
ability to prescribe management treatments (i.e., based on some ideal number or
size of burns) or to quantify unnatural levels of insect outbreak at the landscape scale.

PATTERN ANALYSIS USING HiGH SPATIAL RESOLUTION IMAGERY

The vast majority of published research involving landscape pattern analysis has
used Landsat TM data. Reliable, repeat availability (since the 1970s) at low prices
(or free) has rendered it the true “workhorse” of landscape ecology. The importance
of the repeated imagery, allowing the tracking of changes over time, has revolution-
ized the way ecology, global ecology, and many other disciplines see the world.
Thus, most of our ideas about landscape pattern analysis are derived from a Landsat
view of the world. Questions such as “How has landscape X changed through time?”
are often implicitly asking, “How have the land cover classes associated with 30 x
30 m pixels changed through time?” Issues with the continuity of the Landsat series
of satellites are not explored further here (some details may be found in Chapter 2
of this volume).

New high spatial resolution sensors are under development and deployment,
resulting in data made available more cheaply and readily (e.g., QuickBird,
IKONQOS). Thus, scientists have an unprecedented opportunity to envision landscape
patterns composed of meter and even submeter size pixels. The new research ques-
tions empowered by such approaches are numerous, as are the new challenges
(Wulder, Hall, et al., 2004). The obvious challenge will be reconcilation with the
common Landsat view of the world: many cover types per pixel versus the high-
resolution perspective with many pixels per cover type. The major errors in landscape
metrics previously discussed (mixed pixels at edges of cover types) may become
less relevant as newer problems arise (e.g., finer scale patterns and problems asso-
ciated with shading and structure of the understory).

Are current metrics and approaches relevant for pattern analysis on finer-reso-
lution imagery? How does clumpiness (spatial autocorrelation) vary with scale as
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we move from a worldview with many objects per pixel to one with many pixels
per object? An interesting first attempt at linking pattern metrics with fine-scale
measurements was in tropical forests in Sabah, Malaysia (Marsden et al., 2002).
The goal was to quantify fine-scale structure of understory vegetation at a scale
relevant to a foraging animal. Lateral photographs of the understory vegetation were
converted to black-and-white images, scanned, and then read into Fragstats for a
pattern analysis (Marsden et al., 2002). Findings of the study included that density
measures were intercorrelated (such as mean patch size and number of patches),
and complexity measures (shape and fractal dimension) were also intercorrelated.
However, the shape measures were not significantly correlated with the complexity
measures (Marsden et al., 2002). This study suggested that pattern metrics tradition-
ally used at broader spatial scales may also be useful for vegetation at fine scales.
It also suggested that a coherent set of metrics can be used to measure shape
consistently, while a different set may be useful for measuring complexity. More
important, the work suggested that these measures of shape and complexity are
quantifying distinct, uncorrelated aspects of vegetation structure.

Furthermore, as finer-scale data are often used as “truth” for accuracy assessment
of a coarser-scale image (Achard et al., 2001; Lepers et al., 2005), it is important
to revisit some of the potential issues with this approach. Correlations between a
fine- and coarse-scale image may be influenced by fragmentation levels (Jeanjean
and Achard, 1997). Recall, the results of regression analysis of percentage cover
measured at a fine resolution (e.g., Landsat TM) versus percentage cover measured
at a more coarse spatial resolution (e.g., AVHRR) differed in fragmented and con-
tinuous landscapes (Achard et al., 2001). It was suggested that it may be useful to
control for the effect of this variable (fragmentation) on the variance in the parameter
of interest (area in forest cover) (Achard et al., 2001) by selecting sites based on
several strata that account for the relationship between percentage deforestation and
forest fragmentation. Referring again to their results in Figure 7.3, it is suggested
that a selection of ground truth sites occur in each of four strata: first stratum is low
proportion of forest (<30%) and low fragmentation index; second stratum is 30-50%
forest and low fragmentation index; third stratum is proportion ranging from 50 to
70% and high fragmentation index; and a fourth stratum is more than 70% proportion
and high fragmentation index. Use of 36 sites selected in this way resulted in a
strong r?= 0.94 for percentage forest using Landsat TM versus percentage cover
using National Oceanic and Atmospheric Administration AVHRR imagery. For the
highly fragmented second stratum, the Matheron index may also be used in a
correction procedure (Achard et al., 2001) to control for the oft-reported spatial
aggregation bias in the coarser-scale AVHRR (as well as other possible sources of
bias and error in the imagery) (Hlavka and Livingston, 1997; Jeanjean and Achard,
1997). Surrogates for fragmentation, such as population density, have also been
suggested as useful correction factors for adjusting AVHRR estimates of percentage
forest with finer-scale data sources (Roesch et al., 1995). The “independence” of
such surrogate fragmentation measures from any bias in the particular image from
which it is obtained will be interesting to explore further.

High spatial resolution remote sensing has the potential to fundamentally alter
our view of, and questions posed of, landscapes, and will likely influence the relevant
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scale over which many pattern analyses are conducted. It may influence the call for
more continuous categorizations to represent forest cover classes (e.g., varying by
tree cover) (Lepers et al., 2005) as opposed to traditional discrete categorical land
cover classes.

LINEAR LANDSCAPE METRICS

As mentioned, among the different fragmentation types, such as insular, diffuse,
massive, and linear (Jeanjean et al., 1995), linear landscape metrics are chronically
absent from most software calculation packages and are not in routine use. This is
likely in part due to the nature of raster data and associated software. However,
linear features are far more important in governing landscape pattern than the general
lack of attention in pattern analysis would suggest.

The impact of roads on ecological processes are diverse and substantive (Swi-
talski et al., 2004) and may extend for a considerable distance beyond the road
itself (Forman, 1999; Hansen and Clevenger, 2005). Incorporation of roads into
fragmentation analyses has been debated (Riitters et al., 2004); however, for some
landscape processes, the impact of roads is greater than the impact of other land
cover changes. For example, in a pattern analysis in the Rocky Mountains, the
amount of edge habitat created by roads was 1.54-1.98 times greater than that
resulting from harvest (Reed et al., 1996). The effect of roads is particularly striking
when accounting for the limited area actually occupied by roads on the landscape
(Guthrie, 2002) as drainage patterns in watersheds can be fundamentally rerouted
by roads, altering flows and possibly increasing the risk of landslides (Guthrie,
2002; Roberts et al., 2004; Tague and Band, 2001). Both paved and unpaved roads
are among the drivers of further landscape change, with some of the best examples
from the Amazon (Kirby et al., 2006). Roads can result in injury and mortality to
native organisms or act as barriers to dispersal. Roadside vegetation may help foster
the spread of invasive species (Hansen and Clevenger, 2005). Other linear distur-
bances abound, such as ski runs (Laiolo and Rolando, 2005) and seismic lines for
energy exploration (Bayne et al., 2005), which would likely benefit from descrip-
tions other than “mean road density” that provide little context for the location of
road expansion in a landscape.

Rivers and riparian zones are another smaller cover type, often highly frag-
mented, that could benefit from improved linear LPIs as well as the use of high
spatial resolution remote sensing technology. In many regions of the world, riparian
habitat types are highly linear — they may only occupy 5% of the landscape along
a river corridor but provide important habitat to the majority of the species in a
region (especially arid environments). Riparian areas are also subject to multiple
disturbances that tend to differ from those in the uplands (e.g., floods, scouring,
deposition), and when riparian buffers or riparian management zones are left on the
landscape as part of best management practices, such areas might be particularly
susceptible to blowdown. Thus, the characterization of disturbance patterns in these
areas forms an integral part of truly defining the natural range of variability in a
watershed. Historically, these areas have also been notoriously hard to map using
remotely sensed data at 30-m cell sizes and have been problematic in a variety of
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studies. Thus, new high-resolution data sources should be considered a “revolution”
for mapping riparian areas.

Characterizing and quantifying linear patterns and disturbances on the landscape
are clearly important. Even if traditional LPIs can capture most of the structural
fragmentation of a landscape without explicitly examining roads (Riitters et al.,
2004), the unique impacts of linear features on ecosystems and functional connec-
tivity may warrant them separate consideration. While road densities can easily be
determined, such measures are largely divorced from the surrounding landscape
context. Such summary measures do not enable quantification of such questions as
how many roads traverse a small stream or bisect a large reserve. As finer spatial
resolution imagery will enable better distinctions among primary, secondary, and
tertiary roads, the ability to understand this fundamental driver of landscape change
will undoubtedly improve markedly. That said, linear metrics would be expected to
be quite susceptible to classification error as narrow linear features could be shattered
and split by the mere misclassification of one or a few pixels. For all of these reasons,
linear features deserve further attention in pattern analysis.

CONCLUSIONS

Pattern analysis is a rapidly expanding area of study that has the potential to benefit
diverse disciplines in environmental science. First, a series of heuristics was relayed
to aid in the formulation of the “nuts and bolts” of a pattern analysis. Second, the
results of pattern analyses were discussed more broadly within the context of quan-
tifying natural levels of variability in forest pattern and how this area of research
can be best guided by, and benefit from, the tools of pattern analysis. Concomitant
with this expansion is the potential for misuse. Some components of a rigorous
pattern analysis include:

1. Clearly stated questions and hypotheses

2. A reduction in the total number of metrics reported as many metrics are
redundant

3. An examination of the frequency distributions of LPIs, not just mean
values

4. Acknowledgment that most metrics are “wrong” in some way, with an
effort to identify the most obvious sources of errors and bias

5. Consideration of the accuracy of edge pixels, which may be particularly
misclassified

Understanding the theoretical bounds as well as actual behavior of LPIs remains
a challenge (Neel et al., 2004). It is clear, however, that proportion (composition)
and autocorrelation (configuration) have strong, and sometimes interactive and
nonlinear influence on LPI values. Comparison of LPIs from landscapes with no
information on the probability distribution from which the LPI arose and without
explicit consideration of proportion and autocorrelation can yield less-rigorous
conclusions. Continued research using diverse techniques is needed to quantify
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natural and anthropogenic variability in LPIs. This should include empirical work
supplemented by analysis of landscapes “in bulk” (using many replicates) and
involve both actual and synthetic maps to truly capture the widest range of possible
landscape structures. Identification of statistically significant and ecological signif-
icant differences in LPIs is important, and both must be addressed. Furthermore,
creation and application of metrics that quantify functional connectivity, not just
structural connectivity, are essential, as are metrics that capture the diverse types
and stages of the fragmentation process.

As advances in remote sensing have directly and indirectly driven much of the
evolution of the techniques, future research by the remote sensing community has
the potential to greatly improve the quantitative rigor of pattern analysis. Several
specific knowledge gaps in pattern analysis that could be aided by collaborations
with the remote sensing community include assessing the interplay between errors
in imagery and the metrics derived from them, the development of landscape metrics
that are relevant for use with high-resolution imagery, and improved methods for
quantifying and mapping linear landscape feature disturbances. It is through such
continued collaborations that the best technical and conceptual advances in both
fields can aid our ability to quantify and, it is hoped, manage the dynamic changes
currently undergoing in the landscapes of the world.
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INTRODUCTION

In this chapter, we present a case study intended to help crystallize for many
readers, through use of an illustrative example, some of the important concepts
developed in the preceding chapters. From an understanding of forest successional
and disturbance processes, both natural and anthropogenic (Linke et al., Chapter
1, this volume), research questions were developed to compare and contrast the
landscape patterns generated from fire and harvest disturbance. Remotely sensed
data are demonstrated as an appropriate source of relevant information (Coops et
al., Chapter 2, this volume), enabling the applications presented for the utilization
of change detection approaches for mapping of forest harvest (Healey et al., Chapter
3, this volume) and fire (Clark and Bobbe, Chapter 5, this volume). As presented
in Chapter 6 (Rogan and Miller, this volume), the use of supportive spatial data
sets to aid in the analysis and interpretation of the maps and patterns exhibited is
demonstrated. The forest harvest and fire maps are subjected to pattern analysis
as outlined by Gergel (Chapter 7, this volume), providing insights into the research
questions identified.

FOResT HARVEST AND FIRE DISTURBANCES

Timber harvest and fire are influential disturbance processes affecting many for-
ested landscapes in the American West. These forests are managed for a variety
of human values, including residential, recreational, wildlife habitat, water quality,
and wood production purposes. If managers are to mimic the effects of natural
disturbances, then they must integrate the timing and severity of prescribed dis-
turbances with the ecological requirements of the desired landscape composition
and condition. Understanding the effects of different types of disturbances and
associated alteration of key processes may help to promote ecosystem resiliency
through improved management decisions (Kimmins, 1997). Both forest and fire
management practices influence succession, and the individual and cumulative
effects of disturbances may have positive and negative implications for ecosystem
character and function (Moore et al., 1999; Tinker and Baker, 2000). Development
of sustainable relationships between humans and their environments requires
knowledge of successional consequences.

Forest harvests vary in extent and intensity, but some degree of change in soil
and water properties and loss of nutrients will occur in any harvested system (Pritch-
ett and Fisher, 1987). In general, clearcutting alters microclimatic, soil, vegetation,
animal habitat, and microbial conditions more severely than less-intensive or partial
cutting. Clearcutting favors early successional microclimates and tolerable levels of
vegetation competition but may not create the type of forest floor environment
conducive to regeneration of desired species (Kimmins, 1997). High surface tem-
peratures and low surface soil moisture content may lead to slow revegetation rates
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following clearcutting, although invasive species may find these conditions favorable
(Pritchett and Fisher, 1987). Forest harvest, especially clearcutting, may have greater
influence in hot and dry climates or on steep slopes where the potential for soil
erosion and slow rates of plant recovery is high, particularly if timber harvesting is
coupled with other intensive practices such as grazing, repeat burning, and farming
(Smith et al., 1996). Furthermore, clearcutting results in fragmented forests with
altered age, structural, and spatial characteristics, which may have important impli-
cations for wildlife habitat, bird nesting success, and landscape diversity (Mladenoff
et al., 1993; Tinker and Baker, 2000).

The term burn severity is broadly defined as the degree of ecosystem change
induced by fire and encompasses fire effects on both vegetation and surface soils
(Key and Benson, in press; Ryan, 2002; Ryan and Noste, 1985). Severe fires are
those that result in great ecological changes (De Bano et al., 1998; Johnson et al.,
2003; Moreno and Oeschel, 1989; Rowe, 1983; Ryan, 2002; Ryan and Noste, 1985;
Schimmel and Granstrom, 1996). If “severity” is considered a relative term, then
severe fires are so named because they slow vegetation recovery, alter nutrient cycles,
or increase abundance of invasive species, tree mortality, or soil erosion potential
to an undesirable, perhaps even unnatural, degree. The short-term effects of recent
severe fires have been studied (Graham, 2003; Lewis et al., 2006; Turner et al.,
1997), but there remains limited understanding of the longer-term effects of severe
fires on forest demography and structure (Savage and Nystrom Mast, 2005).

Burn severity varies greatly at fine scales in Africa (Brockett et al., 2001), North
America (Hudak, Morgan, et al., 2004; Hudak, Robichaud, et al., 2004), and else-
where, but the causes and consequences of that spatial variability in terms of postfire
effects are poorly understood. Recent developments in remote sensing and vegetation
pattern analysis allow the evaluation of burn severity, which influences subsequent
vegetation recovery (White et al., 1996). The degree to which prior timber harvest
and other vegetation conditions have influenced fire effects across landscapes is little
understood yet has tremendous implications for the efficacy of fuel management
designed to moderate fire effects.

OBJECTIVE AND ANALYSIS APPROACH

Our objective is to demonstrate consistent and objective use of remote sensing and
geographical information system (GIS) tools to characterize and compare the patch
characteristics of stand-replacing harvest and fire disturbance processes in a conif-
erous forest landscape where both disturbances were known to have recently
occurred. Consistency and objectivity are required for conducting a reliable remote
sensing analysis in the absence of explicit ground validation data (Hudak and
Brockett, 2004; Hudak, Fairbanks, et al., 2004), as was the case in this study. We
do, however, have substantial and sufficient local knowledge of the Cooney Ridge
area and wildfire event to conduct this study.

The two satellite-based spectral indices applied in this analysis were the middle-
infrared corrected normalized difference vegetation index (NDVIc) (Nemani et al.,
1993) and the normalized burn ratio (NBR) (Key and Benson, in press). Pocewicz
et al. (2004), working in mixed-conifer forest in the northern Rocky Mountains,
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found NDViIc to be a better predictor of leaf area index than the more broadly
applied, uncorrected NDVI; “correcting” the NDVI with a middle-infrared band
increased the sensitivity of the index to forest biomass. Therefore, we selected
NDVIc to indicate forest biomass.

Key and Benson (in press) found that NBR outperformed NDVI as a predictor
of composite burn index, an integrated, ecological field measure of burn severity
based on vegetation and soil effects, due to the higher sensitivity of NBR to soil
effects. As a result, NBR is the burn severity index used by the U.S. Forest Service
Remote Sensing Applications Center (RSAC) and the U.S. Geological Survey Earth
Resources Observation and Science Data Center; both produce burned area reflec-
tance classification (BARC) maps to inform rapid response Burned Area Emergency
Rehabilitation (BAER) team decisions on large, active wildfire events (as described
in Clark and Bobbe, Chapter 5, this volume). We also selected NBR to indicate burn
severity in this study, but it must be noted that both NDVI and NBR are more
sensitive to green vegetation cover than to the underlying soils (Hudak, Morgan, et
al., 2004; Hudak, Robichaud, et al., 2004). Therefore, in this study we consider
“severe fire” to be more indicative of a lack of green vegetation cover than to any
soil effects.

Because we wished to map forest cover change as a result of stand-replacing
harvest and fire disturbances rather than simply forest cover condition, whenever
possible we employed image-differencing techniques (delta, d) to indicate forest
harvest with dNDVIc and fire-induced vegetation mortality with dNBR.

METHODS
STUDY AREA

The study area (20,672 Ha) is topographically rugged, with elevations ranging from
1129 to 2353 m (Figure 8.1 and Figure 8.2). Vegetation is mixed-conifer forest type,
with the important conifer species Pseudotsuga menziesii (Douglas fir), Larix occi-
dentalis (western larch), Pinus contorta (lodgepole pine), Pinus ponderosa (ponde-
rosa pine), Abies lasiocarpa (subalpine fir), and Picea engelmannii (Engelmann
spruce) (A. Hudak, 2003). Common shrubs are Physocarpus malvaceus (mallow
ninebark), Alnus incana (thinleaf alder), Symphoricarpos albus (common snow-
berry), Rubus parviflorus (thimbleberry), Shepherdia canadensis (russet buffa-
loberry), Vaccinium membranaceum (thinleaf huckleberry), Spiraea betulifolia
(birchleaf spirea), Mahonia repens (creeping barberry), Acer glabrum var. douglasii
(Rocky Mountain maple), Lonicera utahensis (Utah honeysuckle), and Rosa spp.
(rose). Common forbs include Chamerion angustifolium (fireweed), Arnica cordi-
folia (heartleaf arnica), Apocynum androsaemifolium (spreading dogbane), Linnaea
borealis (twinflower), and Xerophyllum tenax (common beargrass). Common grasses
include Calamagrostis rubescens (pinegrass), Festuca idahoensis (Idaho fescue),
Phleum pratense (timothy), Agrostis scabra (ticklegrass), and Elymus glaucus (blue
wildrye) (L. Lentile, 2004). Equisetum spp. (horsetail) and Peltigera aphthosa
(freckle pelt lichen) commonly occur. Centaurea maculosa (spotted knapweed), a
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FIGURE 8.1 Shaded relief of the Cooney Ridge study area in relation to the relevant Landsat
Path/Row footprints. The 11 watersheds defining the study area (20,672 Ha) are delineated and
ranked in ascending order according to proportion within the 26 August 2003 wildfire perimeter.
Lands within the study area not indicated as private or nonforest are public forest lands.

Category | noxious weed in Montana, frequents roadsides and other disturbed areas.
Forest habitat types in the study area range from warm, dry P. menziesii habitat
types that support fire-maintained P. ponderosa, to cooler habitat types where P.
contorta is a persistent dominant sometimes maintained by fire, to moist lower
subalpine habitat types with A. lasiocarpa and P. engelmannii, where fires are
infrequent but severe with long-lasting effects (Fischer and Bradley, 1987).

The Cooney Ridge wildfire was one of several large wildfire events that occurred
during the 2003 fire season in western Montana (Figure 8.1 and Figure 8.2). Light-
ning ignited the wildfire at several locations on 8 August 2003 (Cooney Ridge
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FIGURE 8.2 (See color insert following page 146.) Color infrared composite images of the
Cooney Ridge study area (a) 1 year before the wildfire (10 July 2002); (b) during the wildfire
(31 August 2003) Note the smoke obscuring the image in the northeastern corner of the burned
area; and (c) 1 year after the wildfire (25 September 2004).

Complex Fire Narrative, 2003), and despite intensive suppression efforts, it burned
9600 Ha before it was finally contained on 15 October 2003.

GEOGRAPHIC INFORMATION LAYERS

As noted in Chapter 6, information stored in a GIS can be used to aid forest change
analyses by constraining or focusing the change detection efforts, with the goal of
extracting more complete and accurate information from spectral data. Four GIS
layers proved vital in this case study: watersheds, land ownership, wildfire perimeter,
and a forest/nonforest classification. The watershed layer was delineated by applying
the TerraFlow (http://www.cs.duke.edu/geo*/terraflow) model to a 30-m digital ele-
vation model obtained from the U.S. Geological Survey National Elevation Dataset.
An ownership layer from the state of Montana (http://nris.state.mt.us) indicated lands
are 72% public national forest and 28% private industrial timberland. The Cooney
Ridge wildfire perimeter originated from the Incident Command GIS team at the
Incident Command camp where fire suppression operations were based and is dated
26 August 2003, when the wildfire perimeter had reached its maximum extent. A
forest/nonforest map was generated by an image analyst at RSAC based on the six
reflectance bands from a 10 July 2002 Landsat ETM+ (Enhanced Thematic Mapper
Plus) image (Table 8.1), using commercial See5 software for thematic classification
(www.rulequest.com). The RSAC image analyst trained the classification with 50
forest and 50 nonforest sample points selected across a broader image subset
(approximately three times the size) surrounding the study area; classification accu-
racy was estimated to be 99% (with 1 point misclassified). In this case, nonforest
was defined as land cover not dominated by green vegetation canopy at the time of
image acquisition and as such includes clearcuts, possibly other recent stand-replac-
ing harvest treatments, or natural openings with little vegetation cover, such as rock
outcroppings or meadows. The land ownership, burned/unburned, and forest/non-
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TABLE 8.1
Landsat-5 (TM) and Landsat-7 (ETM+) Images Used to
Characterize 1995-2002 Harvest and 2003 Wildfire Disturbances

Image date Sensor  Path/row Indices used Condition indicated
31 July 1995 ™ 41/28 NDVlc Preharvest
9 September 2001 ETM+ 41/27 NBR, NDVIc  Prefire
10 July 2002 ETM+ 41727 NDVIc Postharvest
31 August 2003 ™ 41/27 NBR Immediate postfire
25 September 2004 TM 41/27 NBR, NDVIc  One year postfire

forest GIS layers were intersected in Arcinfo, and the percentage of each within the
study area was calculated with an Excel pivot table.

IMAGE PREPROCESSING

We acquired five Landsat images (Table 8.1). All five images had been terrain
corrected using digital elevation models to correct for relief displacement National
Landsat Archive Production (NLAPS) format and were projected to UTM (Zone 11
North). Imagine (Leica Geosystems Geospatial Imaging, Norcross, Georgia,) was
used to perform all image processing functions.

Calculation of radiance is the fundamental step in standardizing raw image data
from multiple sensors to a common radiometric scale (Chander and Markham, 2003).
Raw digital number values of spectral bands were converted to radiance values
(NASA, 1989). To reduce between-scene variability, spectral radiance was converted
to top-of-atmosphere reflectance. This conversion accounted for variable sensor gains
and biases, sun angles, earth-sun distances, and solar spectral irradiances (Coops et
al., Chapter 2, this volume).

The NDVIc and NBR spectral indices were calculated from the Landsat bands
as follows,

NDVIc = (B4 — B3)/(B4 + B3) * [1 —(B5 — B5,,)/(B5,s — B5,;,)] (8.1)
NBR = (B4 — B7)/(B4 + BY) (8.2)

where B3 = red band, B4 = near-infrared band, and B5 and B7 are the two Landsat
TM (Thematic Mapper) and ETM+ middle-infrared bands. The B5,;, and B5,,,
constants used to “correct” NDVI (thus calculating NDVIc) are the full-scene min-
imum and maximum reflectance values in Band 5, respectively, and are assumed to
correspond to complete tree canopy closure and openness, respectively.

IMAGE ANALYSES

The calibrated later-date NDVIc and NBR images were subtracted from the cali-
brated earlier dates to produce dNDVIc and dNBR (delta, d) images. A mask layer
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was constructed from the 31 July 1995 TM scene edge and the boundaries for 11
watersheds of the same mixed-conifer forest type, which encompassed most of the
wildfire perimeter (Figure 8.1). It was necessary to define the study area consistently
in this manner, using density slices, to generate comparable mean and standard
deviation statistics across all layers for the purpose of threshold-based classifica-
tions. Pixels exceeding two standard deviations from the mean clearly indicated the
most pronounced land cover change (i.e., stand-replacing harvest or fire) based on
visual inspection of the density slice results. All of the distributions were skewed
in the direction of the disturbance, and a negligible few to none of the pixels on
the opposite sides of the distributions exceeded two standard deviations from the
mean, so the output layers were limited to two classes in all cases (i.e., stand-
replacing disturbance or not).

The edges of the two output classes after density slicing were heavily pixilated,
so an edge-smoothing utility was applied to smooth the class boundaries while also
eliminating single-pixel misclassifications. This caused the number of pixels belong-
ing to the minority (disturbance) class to change by an average of 8%. We did not
consider this problematic because our intent was not to map the area disturbed
accurately, but to define patches consistently and objectively where disturbance
effects were most pronounced. The cleaned raster image classes were then converted
into vector polygons on which patch metrics could be generated.

PATCH ANALYSES

Many patch metrics are available, although they are often highly intercorrelated
(Gustafson, 1998; Riitters et al., 1995). Based on our objective of characterizing
landscape pattern effects due to stand-replacing harvest and fire disturbances, a
review of quantifying landscape spatial pattern with patch metrics (Gustafson, 1998),
and an analysis of landscape pattern change through time across forested landscapes
in the region (Hessburg et al., 2000), we selected nine metrics that were thought to
be readily interpretable and relevant (Table 8.2). Elkie et al. (1999) provide full
details regarding ArcView Patch Analyst functions (ESRI, Redlands, CA).

The patch metrics were imported into R (R Development Core Team, 2004) for
Student t tests to test for significant differences in the patch metrics between selected
polygon layers of interest. Basing these tests on the entire polygon layers left too
few degrees of freedom to produce reliable results. Therefore, more meaningful
comparisons were made by partitioning the polygon layers by watershed and treating
the watersheds as replicates, which greatly improved the available degrees of free-
dom to enable robust comparisons.

RESULTS
EXTENT OF FOREST HARVEST AND FIRE DISTURBANCES

We considered the nonforest areas in Figure 8.1 to be predominantly indicative of
recent harvest disturbance (some areas such as rocky outcroppings or meadows do
not support forest cover). Similarly, we considered the area within the wildfire
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TABLE 8.2

Patch Metrics Used to Characterize Size, Edge,
and Shape Complexity of Stand-Replacing
Harvest and Fire Disturbance Patches

Patch metric Description
TA Total area
NP Number of patches
MNPS Mean patch size
MDPS Median patch size
PSSD Patch size standard deviation
TE Total edge
MPE Mean patch edge
AWMSI Area-weighted mean shape index?
MPAR Mean perimeter:area ratio

2 AWMSI is a measure of shape complexity. AWMSI equals
one when all patches are circular (polygons) or square (grids)
and is greater than one when shapes are more complex; indi-
vidual patch area weighting is applied to each patch. Because
larger patches tend to be more complex than smaller patches,
area-weighted measures have the effect of determining patch
shape complexity independent of patch size (Elkie et al., 1999).

perimeter to have predominantly burned (although some areas did not burn).
Because these generalizations should apply equally to both private and public lands,
one could assume that land ownership should have no effect on disturbance. Figure
8.3 suggests that private lands were relatively more disturbed than public lands
regarding both harvest and fire. Student t tests conducted across the 11 paired
watersheds indicated that indeed a significantly higher proportion of private lands
(and significantly lower proportion of public lands) was nonforest than would be
expected based on the observed nonforest proportion in each watershed without
regard to ownership (Table 8.3). However, observed versus expected proportions
of private (or public) lands that were inside the wildfire perimeter did not signifi-
cantly differ (Table 8.3).

PATcH CHARACTERISTICS OF STAND-REPLACING DISTURBANCES

The image differencing and density slicing operations resulted in two NDVIc layers
and one dNDVIc layer considered most indicative of stand-replacing harvest prior
to 2002 and two NBR layers, two dNBR layers, and one dNDVIc layer considered
most indicative of stand-replacing fire from the 2003 wildfire (Figure 8.4 and Figure
8.5). The patch metrics generated on these eight polygon layers quantified patch
size, edge, and shape complexity (Table 8.4) of stand-replacing harvest and fire
disturbances in this study area over the past decade.
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B Nonforest, inside fire perimeter
O Nonforest, outside fire perimeter

£ Forest, inside fire perimeter

O Forest, outside fire perimeter

40%
(a) Private Lands

3% 5%

B Nonforest, inside fire perimeter
O Nonforest, outside fire perimeter
£ Forest, inside fire perimeter

62% O Forest, outside fire perimeter

(b) Public Lands

FIGURE 8.3 Observed proportions of (a) private and (b) public lands that were nonforest or
forest and inside or outside the wildfire perimeter.

TABLE 8.3

Student t-Test Results Comparing Observed versus Expected
Proportions of Private and Public Lands that Were Nonforest
(and Likely Harvested) or Inside the Wildfire Perimeter

(and Likely Burned)

Land category |t| value p value Significance?
Private lands
Observed versus expected, nonforest 2.8761 .0165 *
Observed versus expected, inside fire perimeter 0.1509 .8830 ns
Public lands
Observed versus expected, nonforest 2.4039 .0371 *
Observed versus expected, inside fire perimeter 0.5481 .5956 ns

Note: The comparisons were paired across all 11 watersheds.

a * = p <.05; ns = not significantly different.
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2002 NDVic | 437
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] 2001-2004 dNDVic|

[[_11995-2002 dNDVic

Kilometers Watersheds
[ — s—|
0 25 5 10 15 /] Private lands

FIGURE 8.4A (See color insert following page 146.) Stand-replacing disturbance maps: (1)
31 July 1995 NDVIc; (2) 10 July 2002 NDVIc; (3) 31 July 1995 to 10 July 2002 dNDVIc;
and (4) 9 September 2001 to 25 September 2004 dNDVIc. The NDVIc-derived polygons
indicate patches with minimal forest biomass (Maps 1 and 2), and the dNDVIc-derived
polygons indicate patches of stand-replacing disturbance before the 2003 wildfire (Map 3) or
as a result of the 2003 wildfire (Map 4). The NDVIc-derived patches are more than two
standard deviations below the mean image value, while the dNDVIc-derived patches are more
than two standard deviations above the mean image value. Continued.
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[[”12001-2003 dNBR| s _ [_12001-2004 dNBR|

Kilometers Watersheds
[ — T —
0 25 5 10 15 /| Private lands

FIGURE 8.4B (See color insert following page 146.) Stand-replacing disturbance maps: (1)
31 August 2003 NBR; (2) 25 September 2004 NBR; (3) 9 September 2001 to 31 August
2003 dNBR; and (4) 9 September 2001 to 25 September 2004 dNBR. The NBR-derived
polygons indicate patches with minimal postfire green vegetation cover (Maps 1 and 2), and
the dNBR-derived polygons indicate patches of severe fire-induced tree mortality due to the
2003 wildfire (Maps 3 and 4). The NBR-derived patches are more than two standard deviations
below the mean image value, while the dNBR-derived patches are more than two standard
deviations above the mean image value.
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] 2001-2004 dNDVic |
™™ 1995-2002 NDVic
:l Watersheds

Private lands

Nonforest
Wildfire area Kilometers ’E
0 2.5 5 7.5 10

FIGURE 8.5 Juxtaposition of 1995-2002 dNDVIc polygons indicative of stand-replacing
disturbance prior to the 2003 wildfire and 2001-2004 dNDV Ic polygons indicative of stand-
replacing disturbance due to the 2003 wildfire in relation to ownership, the forest/nonforest
classification, and the area bounded by the wildfire perimeter (all lands not otherwise labeled
are unburned forest on public land). Watersheds are numbered as in Figure 8.1.
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CONTRASTS BETWEEN STAND-REPLACING HARVEST AND FIRE
DisTurBANCE PATCHES

Comparing the patch metrics from delta (difference) images to those from the single-
date images (Table 8.1) used to derive the delta images would have violated assump-
tions of statistical independence, which limited the number of comparisons that
could be conducted. The most robust Student t tests compared patch metrics averaged
from the two NDVIc layers to patch metrics averaged from the two NBR layers.
The NBR patches indicative of stand-replacing fire had significantly higher mean
patch size and mean patch edge than the NDV Ic patches indicative of stand-replacing
harvest (Table 8.5).

Student t tests contrasting the two independent NDVIc layers (pairing all 11
watersheds) revealed fewer patches (p =.0153) and less total edge (p =.0445) in
2002 than in 1995. This may indicate fewer recent stand-replacing harvest patches
in 2002 than in 1995. Comparisons of the independent 2003 and 2004 NBR layers
(pairing the 7 watersheds with stand-replacing fire patches) showed no significant
differences. Finding more significant differences in the NDVIc layer contrast than
in the NBR layer contrast is to be expected given that the NDVIc layers were derived
from images 7 years apart, while the NBR layers were derived from images only 1
year apart. Comparisons of the independent 1995-2002 dNDVIc and 2001-2004
dNDViIc layers (pairing the 8 watersheds with patches in both layers) again found
no significant differences.

TABLE 8.5

Student t-Test Results Contrasting Patch Metrics Averaged
from the 31 July 1995 and 10 July 2002 NDVIc Layers
Indicating Stand-Replacing Harvest Patches with Patch
Metrics Averaged from the 31 August 2003 and 25
September 2004 NBR Layers Indicating Stand-Replacing
Fire Patches

Patch metric |t| value p value Significance?
Total area 0.6467 5417 ns
Number of patches 2.3387 .0580 ns
Mean patch size 4.8254 .0029 ol
Median patch size 1.9104 .1047 ns
Patch size standard deviation 1.3474 .2265 ns
Total edge 0.0286 .9781 ns
Mean patch edge 6.2771 .0008 Fkx
Area weighted mean shape index 1.5198 1794 ns
Mean perimeter area ratio 1.9143 1041 ns

Note: The tests were paired across the seven watersheds with patches in all
four layers.

a **x = p <,001; ** = p <.01; ns = not significantly different.
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DISCUSSION
REMOTE SENSING OF FOREST PATTERN AND DISTURBANCE PROCESSES

Satellite images provide a discrete snapshot in time, while landscape disturbance
processes are continuous. Multitemporal images (e.g., both pre- and postdistur-
bance) are generally preferred given an ability to capture disturbance processes
because delta images provide a viewable measure of land cover change rather than
a snapshot of land cover condition (White et al., 1996). However, care must be
taken in image selection for multitemporal analysis for two reasons. First, the image
sensors should be compatible. The Landsat data record is most useful given its
current length of more than 34 years, which is commensurate with the temporal
scale of many forest disturbance processes.

The second reason lies not with the sensor but with the scene. Other vectors of
change are captured in delta images besides the disturbance processes of interest.
Topographic shadows dramatically affect spatial patterns in rugged terrain such as
in our study area, making it highly desirable to choose pre- and postdisturbance
images with similar solar illumination conditions. We chose a 9 September 2001
prefire image because it much more closely matched the acquisition months of our
two postfire images than the 10 July 2002 image, even though the latter was acquired
more recently before the fire. For the same reason, we chose to subtract the 10 July
2002 image from the 31 July 1995 image to indicate prefire stand-replacing distur-
bance. The months from July to September are typically dry in the northern Rocky
Mountains, which greatly influences vegetation phenology. Southern aspects are
relatively drier, with sparser tree cover, making the background reflectance more
influential and seasonally dynamic. Provided such caveats can be met, delta images
are more informative than single-date images for characterizing disturbance.

The 2001-2004 dNBR (Figure 8.4B) and 2001-2004 dNDVIc (Figure 8.5)
polygon layers exhibit a highly similar pattern. This is to be expected given that
both indices originated from the same source images, and NBR and NDVIc are
highly correlated because they share the same near-infrared band. We chose NDVIc
over NDVI to indicate forest biomass based not only on literature support (Nemani
et al., 1993; Pocewicz et al., 2004) but also because NDVIc has less in common
with NBR than NDVI (compare Equation 8.1 and Equation 8.2). While BAER teams
prefer NBR over NDVI for the greater sensitivity of NBR to soil effects (Parsons,
2003), both indices are highly sensitive to vegetation cover (Hudak, Morgan, et al.,
2004; Hudak, Robichaud, et al., 2004). At the Cooney Ridge wildfire, NBR and
dNBR-based BARC maps used by BAER teams showed the largest proportion of
high burn severity along the ridge forming the eastern boundary of Watersheds 10
and 11, which our NBR and dNBR layers corroborate (Figure 8.4B).

PATCH CHARACTERISTICS OF STAND-REPLACING HARVEST AND
FIrRe DISTURBANCE

We chose a consistent and objective threshold of two standard deviations from the mean
to define stand-replacing disturbance, whether induced by harvest or fire. We felt that
the absence of spatially explicit field data to indicate subtler timber harvest practices
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(e.g., thinning) or less-severe burns justified choosing a conservative threshold for
defining stand-replacing disturbance. The location of the major stand-replacing harvest
and fire disturbance patches, as indicated in Figure 8.5, matched our observations on
the ground. However, we believe that the extent of the mapped stand-replacing distur-
bance patches is conservative (Figure 8.5) based on our field observations of postfire
effects both immediately and one year after the fire; they are very conservative compared
to the extent of harvest and fire disturbances suggested by the geographic layers (Figure
8.1), which actually much more closely resemble our impressions on the ground.

Like virtually all large wildfires, the Cooney Ridge postfire landscape was very
heterogeneous, with patches varying in size and shape. Many patches within the
wildfire perimeter were lightly burned, and some remained unburned. We do not
recommend our image analysis approach of classifying pronounced departures from
the mean for accurate mapping of burn area extent (see Hudak and Brockett, 2004),
which becomes difficult at low severities. Similarly, this approach is not ideal for
mapping the extent of timber harvest areas (see Cohen et al., 1998) as many partial
cuts will be omitted. Encouragingly, the 1995 and 2002 NDVIc polygon layers that
we considered indicative of stand-replacing harvest (Figure 8.4A) show a pattern
closely matching (but with more limited extent) that of nonforested lands (which
would include more partial cutting) mapped by the RSAC image analyst using Seeb
thematic classification software (Figure 8.5).

Results from this case study demonstrated that stand-replacing harvest patches,
on average, had significantly less area (mean patch size) and edge (mean patch edge)
than stand-replacing fire patches (Table 8.4 and Table 8.5). In general, clearcutting
results in forest pattern characterized by smaller patch sizes, smaller patch perimeter
lengths, greater distances between patches, more edge habitat, and less interior
habitat (Reed et al., 1996) when compared to patterns created by natural processes
such as fire, insect outbreak, avalanches, and blowdowns (Tinker and Baker, 2000).

Stand-replacing harvest (Cohen et al., 1998; Healey et al., Chapter 3, this volume)
and fire disturbances (Hessburg et al., 2000) may be the principal current determinants
of landscape pattern. Prior to European settlement and significant timber-harvesting
activity, fire was the principal disturbance shaping landscape pattern. Undoubtedly,
topography and other disturbances such as insects, disease, and wind also influenced
forest pattern, yet fire effects are coupled to all of these. Timber harvest, fire, and
roads are now the principal determinants of landscape pattern on many private and
public lands, particularly in mid- to high-elevation mixed-conifer forests that have
many roads to facilitate fire detection and suppression (Hessburg et al., 2000; Linke
et al., Chapter 1, this volume), which are high priorities in landscapes subject to
logging and recreational use. Moreover, the primary spatial scale of structural vari-
ation in forests today is at the stand level due to harvesting “footprints,” while
historically the primary scale of forest structural variation may have been broader
and closer to the scale at which burn patches vary across the landscape.

INTERACTION OF FOREST HARVEST AND FIRE DISTURBANCE PROCESSES

Our intent was to consistently and objectively define patches resulting from forest
harvest or fire disturbances. While consistency and objectivity are always advisable,



226 Understanding Forest Disturbance and Spatial Pattern

they are especially important when presenting results without the benefit of geolo-
cated validation data for accuracy assessment. However, we have been heavily
involved with wildfire research at Cooney Ridge, where we have measured prefire
fuels and active fire characteristics at one site and made extensive postfire effects
measurements at this and several other sites distributed across the entire landscape
(Morgan et al., 2004). These field data were gathered prior to this analysis and to
meet different objectives, but in the process of crisscrossing the area while conduct-
ing fieldwork, we became very familiar with the entire Cooney Ridge postfire
landscape. The significantly higher association (Figure 8.3, Table 8.3) of private
lands with largely harvested lands, compared to public lands, was confirmed by our
observations on the ground, the patterns visually apparent in the satellite imagery
(Figure 8.2), and the consistent and objective density slicing approach we used to
delineate stand-replacing disturbance events (Figure 8.4 and Figure 8.5).

The most unexpected result from the patch metrics analysis is the similarity
between the 1995-2002 dNDVIc and 2001-2004 dNDVIc patch metrics. No signif-
icant differences were found across all nine metrics. The 1995-2002 dNDVIc map
shows that the areas of greatest vegetation change within the study area in this time
interval occurred in Watersheds 7, 10, and 11. The large polygons in Watershed 7
can be attributed to the 700-Ha 1998 Gilbert Creek 2 fire (Gilbert Creek Fire Incident
Action Plan, 1998), part of which reburned through the 226-Ha 1985 Gilbert Creek
1 fire. Both fires occurred in early September (Ed Mathews, U.S. Forest Service
Missoula Fire Sciences Lab, email, 1 December 2005). The large polygons in
Watersheds 10 and 11 can be attributed to large clearcuts on the private industrial
forest land that comprises most of these watersheds (Figure 8.5). Enough time
elapsed since these disturbances to allow shrubs and herbaceous vegetation to
recover, thus increasing the 10 July 2002 NDVIc values sufficiently to escape
detection in the single-date density slice of this image (Rogan et al., 2002). This
exemplifies the value of delta images over single-date images for disturbance map-
ping, especially as time elapses until the acquisition of the postdisturbance image
(Hudak and Brockett, 2004).

Timing of image acquisitions heavily influenced our results and interpretation.
The clearcut areas in Watersheds 10 and 11 were mapped as severely burned using
NBR derived from immediate postfire imagery that RSAC used to produce a BARC
map (Stone et al., 2004). Many of these same clearcuts were no longer mapped as
severely burned when NBR and dNBR were derived from postfire imagery acquired
one year later (Figure 8.4B and Figure 8.5). This exemplifies the merit of one-year
postfire images for extended assessments of burn severity because the degree of
postfire vegetation regrowth is in itself a very useful indicator of ecological impact
(Key and Benson, in press).

Most of the areas mapped as severely burned in our analysis were on steep,
upper slopes adjacent to and above clearcuts. The 1995-2002 dNDVIc and
2001-2004 dNDVIc polygons clearly do not overlap (Figure 8.5) because following
a clearcut there is little biomass remaining to burn compared to a mature forest.
However, what is more remarkable is the obvious adjacency of the polygons in
these two independently derived layers. The adjacency of the 1995-2002 dNDVIc
polygons on the eastern side of Watersheds 10 and 11 to the 2001-2004 dNDVIc
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polygons immediately east (i.e., on either side of the ownership boundary) matches
our field observations. Strong westerly winds on 16 and 17 August 2003 caused
extreme fire behavior and the fastest fire progression of all days on the Cooney
Ridge wildfire based on unpublished GIS data obtained from fire managers (Stone
et al., 2004). We believe that availability of abundant dry fuel stemming from recent
clearcuts on the private lands in Watersheds 10 and 11 coupled with extremely low
fuel moistures, local topography, and very hot, dry, windy weather all contributed
to the rapid advance of intensely burning fire from the clearcut private lands into
the standing timber on public land. This resulted in the large, severely burned
patches along the ridge defining the eastern edge of Watersheds 10 and 11 (Figure
8.5). In many mid- to high-elevation forests common in the northern Rocky Moun-
tains, weather and topography rather than fuels are often the primary variables
determining fire size and severity (Bessie and Johnson, 1995; Sherriff et al., 2001;
Turner et al., 1994).

Together, the large clearcuts on private lands and the extensively burned areas
on both private and public lands created large, relatively homogeneous patches with
few trees. Although shrubs and grasses will rapidly regrow, the lack of tree cover,
especially on steep slopes, could contribute to soil erosion. Postlogging tree planting
and postburn rehabilitation are designed to hasten tree establishment and to mitigate
possible soil erosion. To the credit of local managers, we did observe many newly
planted tree seedlings in Watershed 11 one year after the wildfire.

CONCLUSIONS

This case study illustrates the importance of landscape context in determining severe
burn patterns. Fuels, weather, and topography interact to determine active fire behav-
ior and subsequent postfire effects (Pyne et al., 1996). Unfortunately, current under-
standing of these interactions is limited. Land use features such as roads and clearcuts
can fragment forested landscapes (Bresee et al., 2004). Fire management decisions
also alter landscape pattern. Fire managers are very successful at suppressing the
vast majority of fires, so most are small. Hessburg et al. (2000) quantified a high
degree of change and variability in forest landscape pattern over 60 years across
Idaho, Montana, and Washington and attributed this to the combined effects of fire
exclusion and other land uses. In further analysis of their data, Black et al. (2003)
found that changes in forest patterns across mountainous landscapes were correlated
with both human and biophysical factors.

Fire and other disturbances have played important ecological roles in western
coniferous forest ecosystems. In extreme years, especially after prolonged drought,
extensive areas burn across the western United States (Swetnam and Betancourt,
1990, 1998). Such years account for the majority of the area burned (Strauss et al.,
1989) and the greatest threats to people and property (Maciliwain, 1994). Fuel
management through logging or other means will be less effective when drought
and weather conditions are extreme, as they were in western Montana in 2003. One
of the clearest lessons from history is that fires have always occurred, and they will
continue to occur despite our efforts to detect and suppress them (Morgan et al.,
2003). In most forest ecosystems in western North America, biomass production
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exceeds decomposition; this accumulated biomass fuels fires when lightning or
people ignite fires in hot, dry, windy conditions. An understanding of where fires
are more likely to be severe would help to strategically locate and design fuel
management treatments where they will be most effective. Such an understanding
would also be helpful in strategic fire suppression, fire mitigation, and postfire
rehabilitation decisions.

Like all real landscapes, the Cooney Ridge landscape is unique. Thus, it would
be misguided to generalize our case study results and interpretation to other land-
scapes, which have their own unique contexts. Yet, the disturbance processes
observed at Cooney Ridge are common to other forested landscapes shaped by timber
harvest and fire, as nearly all forested landscapes are to some degree. The recent,
dramatic disturbance history at Cooney Ridge creates a fertile setting for exploring
how human and natural disturbances interact to shape landscape pattern. This case
study may raise more questions than it answers; in fact, we hope that it does. We
encourage others to think about how they might also use remote sensing and GIS
tools for quantifying landscape patterns, which can provide a window for better
understanding of landscape disturbance processes.
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CONTEXT, CONVERGENCE, AND INTEGRATION

Remotely sensed and geographical information system (GIS) data may be processed
or combined to produce information depicting landscape patterns or structure,
including land cover, biophysical or biochemical status of vegetation, or other
attributes of interest (e.g., soil moisture). Information regarding the land cover
representing a known time period may be produced through image classification.
Change detection methods may then be applied to quantify the dynamics that have
occurred or are presently active. Pattern analysis — in the form of landscape metrics
or landscape pattern indices (LPIs) — may then be applied to the land cover
information produced through image classification, the disturbance information pro-
duced through change detection approaches, or both. This integration of forest
change information with the tools of pattern analysis provides for unique insights
into the outcomes of management decisions or disturbance events. Comparisons over
space and time are then possible between the patterns that emerge from differing
dynamics or against theoretical base conditions. It is this comparison between the
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patterns that emerge from different disturbances (i.e., fire versus harvesting) that
empowers resource managers to consider anthropogenic change within the greater
context of disturbance processes active on the landscape.

The disturbance patterns evident through measurement provide insights and
encourage inferences to be made regarding the processes operating on the landscape.
There is a complex interaction of feedbacks between pattern and processes on the
landscape (Linke et al., Chapter 1). When attempting to characterize these feedbacks,
an understanding of forest structure and dynamics, appropriate data sources, methods
to capture forest disturbances, and subsequent pattern analysis is required. Typically,
each of these factors is considered in isolation; however, the interactions between
each of these elements create a complex web of considerations that can have a
significant impact on the nature and utility of the resulting information. Through an
improved understanding of these interactions, it is our view that the near- and long-
term prospects for fully integrating forest dynamics and patterns with current forest
conditions are encouraging. Our intention in producing this volume was to tie these
concepts together using domain-specific clarification (e.g., case studies) and reviews
of the key concepts associated with the integration of remote sensing, GIS, and
landscape ecology from a forest-monitoring perspective. This integration is beyond
methods but points to a problem-solving philosophy — or approach — to arrive at
the desired information through consideration and understanding of the process(es)
of interest, clear definition of the information needs required to make appropriate
management decisions regarding the processes and patterns that result, and then to
implement the appropriate remote sensing and GIS data selection and analytical
methods to obtain optimal desired or specified output products.

The objective of this concluding chapter is to summarize and synthesize the
essence of preceding chapters to provide sufficient context for presentation of some
possible future directions envisioned. These future directions will focus on the sig-
nificant opportunities that will be afforded through the accurate and reliable (perhaps
even routine) capture of forest disturbance, in essence, through remote sensing and
GIS approaches coupled with emerging spatial pattern analysis techniques.

UNDERSTANDING FOREST LANDSCAPES:
REMOTE SENSING AND GIS APPROACHES

Forest succession and growth are well-established concepts, with a theoretical basis
and well-defined means for characterization in the field and, increasingly, through
remote sensing. From a baseline of information, such as a forest inventory, image
classification, or permanent sample plot database, forest growth and succession may
be modeled to produce management information products. Forest disturbance, on
the other hand, typically must be captured by some independent means; one of the
goals of this independent assessment (for example, through sketch mapping of
defoliation) is to ensure the quality of information products modeled from a baseline
of information. Landscape ecological principles enable an informed view of spatial
and temporal patterns by relating pattern and processes and understanding the pri-
mary and feedback links.
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Linke et al. (Chapter 1) presented some fundamental concepts useful for under-
standing forest succession, structure, function, and change at the landscape level.
The authors provide an overview of the ecological foundations of landscape ecology,
a discipline with prominence that has increased in recent years largely as a result
of advances in the fields of remote sensing and GIS. This overview is a critical
context for the importance of detecting and monitoring changes in forest landscape
patterns. Key to this first chapter is an elucidation of the complex reciprocal rela-
tionships between forest patterns and processes. The links between the nature of the
dynamics occurring in the forest to large-scale processes, such as biodiversity and
species composition, are only now being fully realized and understood. For example,
it is now widely acknowledged that the conservation of biodiversity requires the
collection of new information to complement traditional sources, such as forest
inventory, modeling, and field observations. Remotely sensed data, and the storage
and processing opportunities resulting from advances in computer technology, offer
those interested in biodiversity conservation a suite of unique approaches that, in
combination with models, will address the increasing information needs to ensure
appropriate management decision making. The integration of a variety of methods
and techniques from remote sensing, GIS, and modeling represents a powerful new
approach to combining data and knowledge synergistically, utilizing individual
geospatial tools, to produce otherwise unavailable and even unsuspected information
from the vast and growing databases under assembly for forest management pur-
poses. The knowledge gleaned at specific points and over generations of detailed
forest observation can be integrated using these new approaches to produce spatial,
mapped outputs. Landscape patterns emerging from differing disturbance regimes,
largely as captured with remotely sensed data, can be quantified, compared, and
considered under a range of contexts. The ability to consider the wider ecological
meaning of emerging spatial patterns and how management or conservation practices
can be adjusted to accommodate these new insights are increasingly enabled through
this new approach, which relies on the application of specific geospatial technologies.

The basic elements for consideration of the ecology of landscapes are the
landscape structure, function, and change (Forman, 1995). Disturbance regimes must
be characterized by magnitude, timing, and spatial distribution; each of these ele-
ments will have an impact on the stand- (or patch-) and landscape-level character
of the forest ecosystem; of course, each of these elements varies by disturbance
regime. This variability will create enormous complications when selecting the
appropriate data source to capture the change, the timing of data collection, and the
grain and extent of the data. This complex interplay of data sources and application
needs are described by Coops et al. in Chapter 2; they advise those considering
adoption of the remote sensing and GIS approach to forest disturbance and landscape
monitoring to know what processes or patterns are of interest and to ensure that the
appropriate data and processing methods are employed. Information needs are the
key driver of both the data and processing methods selection; in other words, first
obtain an understanding of the information required; and from this understanding
will follow specific constraints for data and methods selection. Iteration of the
choices available (from data and methods perspectives) to reach the information
goals can then be undertaken considering the various trade-offs (including spatial
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resolution, image extent, timing, cost). Accommodation can be made to ensure the
optimal data and processing approaches are determined for the given application.

Methodological approaches — including the remote sensing and GIS approaches
described here — are bounded by information desired in the application and, of
course, the data available. For example, while the Landsat sensors have been the
most commonly processed data for undertaking spatial pattern analysis (Gergel,
Chapter 7), higher spatial resolution sensors now commonly provide data commer-
cially with extents of approximately 100 km? composed of 1 x 1 m pixels. Coops
etal. (Chapter 2) illustrate that data are available from increasing numbers of sensors,
with a greater variety of spatial and spectral configurations. In addition, the greater
number of sensors provides for an improved ability to acquire data over the temporal
period of interest.

There is a multitude of methods and specific techniques or algorithms that can
be adopted when using remotely sensed and GIS data for the detection and moni-
toring of forest change. The approach — in general — is based on methods and
techniques that are typically designed to reveal spectral or biophysical changes over
time. Regardless of the image-processing methods selected, GIS data are increas-
ingly considered essential to aid and augment the methods and to extract accurate
disturbance information (Rogan and Miller, Chapter 6). Coops et al. (Chapter 2,
Figure 2.5) present a theoretical representation of the increase in accuracy and
decrease in confidence intervals associated with the ability to detect differing forest
disturbances. As disturbances on the forest landscape become more severe (e.g.,
increase in size), contiguous detection is more likely (i.e., stand replacing). In
contrast, disturbances that are small and heterogeneous over the landscape (i.e.,
defoliation or partial harvesting) are generally more difficult to detect with remotely
sensed data. The ability with which disturbances of various sizes are successfully
detected and mapped is of course dependent on the data source selected for the
application. Furthermore, the spectral variability associated with non-stand-replacing
disturbances is typically greater than that associated with stand-replacing distur-
bance, making repeat detection of these disturbances less probable and often result-
ing in lowered precision of these change estimates. As expected, larger and more
spatially contiguous disturbances are generally mapped with greater consistency and
greater accuracy using a given data source.

Healey et al. (Chapter 3) present an established spectral change approach that
has been used successfully in the U.S. Pacific Northwest. The requirement to
understand information needs and change types present on the landscape is a key
component of their application, and thus they exemplify the remote sensing and
GIS approach. The authors suggest that harvest types vary (clearcut, partial,
thinning, etc.), with each having a differing impact on the landscape, and each
subsequently impacting the resultant spectral properties of a stand. This under-
standing leads to an incorporation of these silvicultural distinctions in their change
maps and help form an understanding of the spatial, temporal, and spectral
resolution issues surrounding the remote detection of all types of silvics and
harvest disturbance. The notion that different measures of forest removal have the
ability to emphasize different structural or silvicultural elements of harvest is
presented. As a result, decisions on how to label and differentiate harvest types
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based on monitoring needs must be integrated into the design of the overall change
detection approach.

To complement the spectral change approaches, which are largely based on land
cover or forest canopy change, employed in Chapters 3, 5, and 8, Hall et al. in
Chapter 4 present a detection and mapping approach based on changes in the
biophysical attribute of leaf area index that result from defoliation caused during an
insect infestation. A primary goal of insect defoliation mapping is consistency in
output products. Also important is an ability to identify a range of defoliation — or
possibly damage — classes, usually indicative of severity of defoliation. Spectral
change approaches, while successful in characterizing defoliation, do not typically
enable damage severity categorization; this is likely a result of high variability —
or a lack of consistency — in the relationship between spectral change and foliar
change. Similar to the difficulties in capturing subtle changes through partial har-
vesting approaches, defoliation does not result in a stand replacement and can be
difficult to detect. Remote sensing scientists have usually recommended the use of
more customized methods rather than off-the-shelf commercially available image-
processing tools. Hall et al. (Chapter 4), recommend the leaf area index-based
biophysical approach, augmented with field observations and aerial sketch-mapping
information, and they show that the remote detection and categorization of aspen
defoliation is accurate and reliable. Similar to how differing silvicultural regimes
result in a range of landscape conditions, the effect on forest canopies and structure
often vary by insect. Hall et al. describe a range of insects and the related damage
characteristics and then tie these conditions back to the expected damage character-
istics, which enables appropriate data and methods selection. Again, these authors
exemplify the link between understanding the disturbance process, the information
needs of resource managers, and remote sensing and GIS approaches.

The maturity and consistency of operational change detection activities is exem-
plified in Clark and Bobbe in Chapter 5. Satellite-based fire mapping is a key
component of suppression and mitigation activities of the U.S. Forest Service. These
authors show that the outputs are sufficiently useful to justify the considerable
investment in infrastructure and personnel. The output products are also consistent
in that the users are able to systematically consider and act on the mapped fire
locations and severities.

In this book, remotely sensed and GIS data are complementary; GIS data are
considered to be the nonspectral digital data included and used in forest mapping
and monitoring applications. GIS data are typically described as “collateral” and
“ancillary” in the literature, as compared to “primary” data collected with remote
sensors. Yet, as clearly shown in this book and in numerous applications almost since
the advent of the field of remote sensing, the strength of remotely sensed and GIS
data can only be obtained through the complementary nature of these two data
sources, and this synergy can best be exploited through integration. Rogan and Miller
in Chapter 6 indicate that the integration of remotely sensed and GIS data takes four
primary forms: (a) GISs can store multiple data types; (b) GIS analysis and processing
enable raster data manipulation and analysis (e.g., buffer/distance operations); (c)
remotely sensed data can be manipulated to derive GIS data; and (d) GIS data can
be used to guide image analysis to extract more complete and accurate information
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from spectral data. The focus of Chapter 6 is primarily on the fourth topic, with the
support of the previous three methods. The authors emphasize the notion that GIS
data and systems can be utilized to produce improved disturbance information from
remotely sensed data. Combined advances in computing power, inexpensive disk
storage, and software have enabled the increased integration of remotely sensed and
GIS data. Rogan and Miller also highlight current research themes that will further
the integration of remote sensing and GIS technologies, including expert systems,
object-based analyses, simultaneous consideration of spatial and temporal compo-
nents of change, continuous fields, and persistent diligence regarding the accuracy
of information products. Advances in these areas are thought to have potential for
generating disturbance information that is in turn more suitable for the increasingly
reliable and predictable approaches emerging from pattern analyses.

Gergel (Chapter 7) reviews the expanding discipline of landscape ecology and
the related development of LPIs and posits that the discipline of remote sensing and
related advances and techniques in other fields are directly responsible for a new
ability to ask questions about pattern at broad spatial scales. It is this ability to
consider questions representative of broader scales on large landscapes, in contrast
to plot-focused traditional ecology and field sampling, which have advanced the
discipline of landscape ecology. The understanding and communication of pattern
analysis approaches and outcomes are expanding rapidly, with these approaches
possibly beneficial to a wide range of environmental science disciplines. To aid in
the robust application of pattern analysis tools, Gergel recommends a systematic
approach to implementation: (a) clearly state questions and hypotheses, (b) use only
nonredundant metrics, (c) examine the frequency distributions of LPIs, (d) elucidate
on possible errors or biases, and (e) consider the accuracy of the source data. Further,
it is of value to recall that the theoretical bounds of LPIs are not fully understood,
and that proportion (composition) and autocorrelation (configuration) have strong,
and sometimes interactive and nonlinear, influences on LPI values.

The combination of spatially comprehensive and accurate disturbance informa-
tion with pattern analysis allows for the provision of insights on the nature of the
change to the landscape (and implications). For example, there is wide interest in
determining the character of the relationships between natural and anthropogenic
disturbances; questions arise, such as “Can natural disturbance type (fire) be emu-
lated with forest management activities (e.g., harvest techniques)?” (e.g., Perrera et
al. 2004). Stand-replacing harvest, road building, and fire disturbances are among
the primary factors determining landscape pattern over the forests of North America.
It is known that, prior to European settlement and significant timber-harvesting
activity, fire was the principal disturbance shaping landscape pattern (Hudak et al.,
Chapter 8). The disturbance patterns currently evidenced on the landscape are largely
at the patch size of typical harvest units, whereas historically, common disturbance
patch sizes were quite different. Hudak et al. exemplify the remote sensing and GIS
approach to test whether different disturbance regimes produce similar landscapes;
in their own words, they set out to “demonstrate consistent and objective use of
remote sensing and geographical information system (GIS) tools to characterize and
compare the patch characteristics of stand-replacing harvest and fire disturbance
processes in a coniferous forest landscape where both disturbances were known to
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have recently occurred.” The approach was based on remotely sensed data with GIS
support to map both harvest and fire disturbances. The authors employed change
detection approaches that enabled the differentiation between forest change and
condition over time. The results of their case study illustrate some interesting trends
and differences regarding the LPI representing the harvest- and fire-disturbed areas.
For example, they found that clearcutting results in forest patterns characterized by
smaller patch sizes, smaller patch perimeter lengths, greater distances between
patches, more edge habitat, and less interior habitat when compared to patterns
created by natural processes such as fire, insect outbreak, avalanches, and blow-
downs. Some management implications were made clearly evident in the patterns
that emerged; for example, there were differences in patterns associated with own-
ership of the burned areas. While some trends were evident, the authors were also
careful to caution users to be diligent and transparent in method selection and
application. Presentation of the pertinent issues and information needs, followed by
a case study, aid in the understanding of how remote sensing and GIS can combine
with pattern analysis approaches to produce otherwise unavailable information and
allow for landscape-level inferences and comparisons and, over time, enable
improved forest management. Clearly, improved understanding of the relationships
between harvesting activities, ownership, forest structure, and resultant burn condi-
tions is of high value to forest and land managers.

PLANNING FOR FUTURE DEVELOPMENTS

The future of pattern analysis appears tied to that of remote sensing; the satellite
systems available will be capitalized on by the landscape ecology community to
inform and develop a wide range of interests. This linkage is encouraging for forest
managers, scientists, and landscape ecologists alike as the remote sensing community
is poised to continue sensor developments (Stoney, 2004) and to create novel infor-
mation generation methods. Gergel (Chapter 7) presents some notions regarding
challenges and opportunities when considering co-developments of remote sensing
and pattern analysis, including accuracy assessment of landscape metrics, pattern
analysis using high spatial resolution imagery, and linear landscape metrics. Of these,
pattern analysis using high spatial resolution imagery has the greatest potential for
impact through increased data availability and lower acquisition costs. As mentioned
by Gergel, many of the assumptions regarding the interpretation of LPI are based
on the processing of Landsat imagery. Landsat pixels are composed of many ele-
ments (i.e., trees, shadows, shrubs in a forested environment), whereas, high spatial
resolution data, with pixel size 1 x 1 m or less, may be composed of a single, or
few, elements. As a result, the relationships between pixels (configuration) will be
changed, with the nature of the actual neighboring elements changed as well, poten-
tially from stand components to tree components. Depending on the high spatial
resolution sensor under consideration, the spectral resolution must also be consid-
ered. The commercial systems currently available (Ikonos, QuickBird) collect pan-
chromatic data with the high spatial resolution (1 m or less) channels onboard. Many
of the image classification or change detection methods described in this book, and
elsewhere, appear to operate best on multispectral channels, and these are (at present)
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typically associated with a lower spatial resolution (i.e., 4-m Ikonos, 2.4-m Quick-
Bird). Further, the paradigm of many pixels per element described for the high spatial
resolution situation does not necessarily hold for pixels of this (2.4- to 4-m) spatial
resolution. The ability to robustly classify and detect change with high spatial
resolution imagery is currently a major research focus in the remote sensing com-
munity (Wulder et al., 2004).

General advances in the ability to detect, map, and monitor disturbances, with
the intention to process these disturbances subsequently with pattern analysis tech-
niques to gain new insights into landscape processes, will be continually enhanced
by ongoing increases in computing power, inexpensive disk storage, and advances
to geospatial data and tools. Encouraging these trends is that satellite data are
increasingly available to characterize large areas over long time periods with medium
spatial resolution imagery, appropriate for landscape-level analyses (Franklin and
Waulder, 2002).

LPIs typically consider only the horizontal distribution of structure. Although
only mentioned briefly in this book, LIDAR (light detection and ranging) data are
considered poised to lead to some breakthroughs in the ability to make ecological
inferences through pattern analysis. The vertical structural component of data col-
lected with LIDAR systems will enable patterns to be compared within locations
(forest strata) and between locations. Measures of forest structural complexity,
providing vertical information (LIDAR-based strata-level complexity) may enable
development of vertical pattern stacks. Using the parlance of the GIS community,
“voxels” of pattern may be developed, providing each location with additional
complexity information that can be linked back to ecological conditions.

The capacity of GIS and database applications to store and manipulate increas-
ingly large data structures opens opportunities for altering the relationship between
remotely sensed and GIS data. Rogan and Miller (Chapter 6) indicated that the
relationship was previously that of data producer (remote sensing) and data user
(GIS). Rather than attempting to use remote sensing to produce and keep classifi-
cations current, a regular tessellation could be created (e.g., 25 m) by which land
cover is stored and maintained. Changes to such a database could be integrated
based on remote sensing of disturbance and through modeled growth. Rather than
utilizing only remotely sensed depictions of landscape conditions, modeled condi-
tions (based on spatial data, including remotely sensed data) capturing a wide range
of detailed structural attributes can be perturbed with remote sensing depictions of
change. The locations of change will be noted in the GIS, and the forest information
will be initialized and “digitally grown” from that spatial location and point in time
into the future. Monitoring in such a way will enable the reporting on forest
processes in a spatially explicit manner. Development of such databases will allow
for the observation of patterns that are currently present and those that are envisioned
based on growth or differing change scenarios. Forest and land managers will have
the ability to make decisions based on knowledge of current conditions and inter-
actions as well as to “see” the impact of those management decisions (i.e., harvest-
ing). Management decisions could be made based on particular landscape ecological
conditions, as captured with LPI, that are deemed desirable in the future, for
example, thresholds for fragmentation levels associated with roads and pipeline
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developments in a given forest management area. Hypothesis testing of differing
disturbance scenarios would be enabled. Further, coupling of visualization tools
with landscape conditions that represent the desired ecological conditions could be
viewed and considered.

TOWARD FOREST SUSTAINABILITY

Remote sensing and GIS approaches are increasingly recognized, in combination
with field data and modeling methods, as a realistic means to monitor landscape
change over large areas with sufficient spatial detail to allow comparison of resultant
patterns of different management or natural disturbance regimes. The approach, in
general, consists of three broad but critically important steps: (a) understand the
process of interest; (b) clarify the information needs required to make appropriate
management decisions regarding the processes and patterns that result; and (c)
implement appropriate remote sensing and GIS data selection and analytical methods
to obtain optimal desired or specified output products.

Forest ecosystems are complex. Management of forest ecosystems is an enor-
mously challenging undertaking, particularly with sometimes unclear limits to
knowledge, yet few would argue that environmental management be conducted with
less information. The impact of human management decisions on the forest land-
scape creates further complexities through interactions. As a result, the mapping and
monitoring of disturbances must be accurate, and the LPIs generated through pattern
analysis must be predictable, with known properties measured on the landscape. We
articulate in this book the growing convergence of maturing disciplines — remote
sensing, GIS, landscape ecology, forest management — that together generate a
framework that enables disturbance mapping and subsequent pattern analysis of
sufficient quality and consistency that a wide range of ecological and forest stew-
ardship insights are made possible. These insights — for example, the comparison
of landscape structure before or after one dominant disturbance regime (e.g., fire)
has been replaced with another (e.g., harvesting) — result in an improved under-
standing of the linkages between existing patterns and processes operating on the
landscape and changes to these patterns and processes over time. An increase in the
ability and desire of forest managers to consider novel approaches has also occurred
as a result of these new approaches to sometimes familiar yet seemingly intractable
management problems. As indicated in this book, we believe many advances in
remote sensing, GIS, and landscape ecology have been made, but clearly this is
simply the beginning of a concentrated effort to bring coherence to previously
isolated and diverse activities into a new, synergistic, and integrated approach.
Ultimately, our hope is that by improving our collective ability to consider fully all
of the competing factors that have an impact on our forests, whether those forests
be managed principally for conservation or timber or for that matter any particular
management objective, more insightful and inclusive management practices will
emerge that will contribute toward long-term forest sustainability.
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Clearcut Regeneration Harvest

FIGURE 3.1 Common harvest practices represented in color orthophotos and tasseled cap-
transformed (Crist and Cicone, 1984) Landsat data. Both sets of images were acquired in
2002 and show closed-canopy coniferous forests in central Washington State.
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FIGURE 3.4 Map of stand-replacing harvests and fires within the range of the northern
spotted owl in Oregon and Washington from 1972 to 2002.



FIGURE 3.6 Three dates of DI as viewed in a typical red-green-blue (RGB) monitor. The
first date (1988) is plotted in the red color gun, the second (1992) in the green, and the third
(1996) in the blue. Using the assumption that DI is high in disturbed areas, additive color
logic can be used to interpret this multitemporal image. Cyan-colored areas are high in both
the second and third dates, suggesting a disturbance between the first and second dates. Blue
pixels have a high DI only in the third date, indicating the occurrence of a disturbance between
the second and third dates. Reddish colors indicate stands disturbed prior to the first date that
are becoming revegetated by the second and third dates.

30 1 1.0
2 251 Z 084
E 5 0.8
g 207 F 061
£ 15 £
& » 044
£ 10 E
3] 9 0.2
=) _/\ =
0 f T u T T 0.0 N T T T :
1999 2000 2001 2002 2003 1999 2000 2001 2002 2003
Year Year
(a) Aspen Defoliators (b) Gypsy Moth
10 4 1.0
& @ |
E 8 E 0.8
Z 6l /—-—_-—\ F 061
] g
g 44 § 0.4 4
g 4 © 024
2
z -
T T T T T 0.0 T T T T T
1999 2000 2001 2002 2003 1999 2000 2001 2002 2003
Year Year
(c) Spruce Budworm (d) Hemlock Looper
1.0
Z o8
é Canada
TE"‘ 06 Continental U.S.
=l North America
g 04 (Canada and Continental U.S. only)
3
§ 0.2 Note: Due to varying magnitudes of
T : reported areas of defoliation, the vertical
0.0 scale was adjusted to best depict the patterns
1999 2000 2001 2002 2003 of defoliation for each insect.

Year
(e) Jack Pine Budworm

FIGURE 4.1 Patterns of moderate-to-severe insect defoliation from 1999 to 2003 in Canada
and the continental United States.
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FIGURE 6.3 Overview of LCMMP Phase | and Phase Il classification methodology.
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FIGURE 8.2 Color infrared composite images of the Cooney Ridge study area (a) 1 year
before the wildfire (10 July 2002); (b) during the wildfire (31 August 2003). Note the smoke
obscuring the image in the northeastern corner of the burned area; and (c) 1 year after the

wildfire (25 September 2004).
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FIGURE 8.4A Stand-replacing disturbance maps: (1) 31 July 1995 NDVIc; (2) 10 July 2002
NDVIc; (3) 31 July 1995 to 10 July 2002 dNDVIc; and (4) 9 September 2001 to 25 September
2004 dNDVIc. The NDVIic-derived polygons indicate patches with minimal forest biomass
(Maps 1 and 2), and the dNDVIc-derived polygons indicate patches of stand-replacing dis-
turbance before the 2003 wildfire (Map 3) or as a result of the 2003 wildfire (Map 4). The
NDVIc-derived patches are more than two standard deviations below the mean image value,
while the dNDVIc-derived patches are more than two standard deviations above the mean

image value.
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FIGURE 8.4B Stand-replacing disturbance maps: (1) 31 August 2003 NBR; (2) 25 September
2004 NBR; (3) 9 September 2001 to 31 August 2003 dNBR; and (4) 9 September 2001 to
25 September 2004 dNBR. The NBR-derived polygons indicate patches with minimal postfire
green vegetation cover (Maps 1 and 2), and the dNBR-derived polygons indicate patches of
severe fire-induced tree mortality due to the 2003 wildfire (Maps 3 and 4). The NBR-derived
patches are more than two standard deviations below the mean image value, while the dNBR-
derived patches are more than two standard deviations above the mean image value.
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